Home
Class 12
MATHS
int(sinx. cos x)/(a^(2) cos^(2) x+b^(2) ...

`int(sinx. cos x)/(a^(2) cos^(2) x+b^(2) sin^(2) x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin x \cos x}{a^2 \cos^2 x + b^2 \sin^2 x} \, dx, \] we can follow these steps: ### Step 1: Simplify the Denominator We can express \(\sin^2 x\) in terms of \(\cos^2 x\) using the identity \(\sin^2 x = 1 - \cos^2 x\): \[ I = \int \frac{\sin x \cos x}{a^2 \cos^2 x + b^2 (1 - \cos^2 x)} \, dx. \] ### Step 2: Rewrite the Denominator Now, substitute \(\sin^2 x\): \[ I = \int \frac{\sin x \cos x}{(a^2 - b^2) \cos^2 x + b^2} \, dx. \] ### Step 3: Substitute for \(\cos x\) Let \(t = \cos x\), then \(dt = -\sin x \, dx\) or \(-dt = \sin x \, dx\). The integral becomes: \[ I = -\int \frac{t}{(a^2 - b^2)t^2 + b^2} \, dt. \] ### Step 4: Factor out Constants We can factor out the constant from the denominator: \[ I = -\frac{1}{a^2 - b^2} \int \frac{t}{t^2 + \frac{b^2}{a^2 - b^2}} \, dt. \] ### Step 5: Use a Suitable Substitution Let \(u = t^2 + \frac{b^2}{a^2 - b^2}\), then \(du = 2t \, dt\) or \(dt = \frac{du}{2t}\). The integral becomes: \[ I = -\frac{1}{2(a^2 - b^2)} \int \frac{1}{u} \, du. \] ### Step 6: Integrate The integral of \(\frac{1}{u}\) is \(\ln |u|\): \[ I = -\frac{1}{2(a^2 - b^2)} \ln |u| + C. \] ### Step 7: Substitute Back for \(u\) Substituting back for \(u\): \[ I = -\frac{1}{2(a^2 - b^2)} \ln \left| t^2 + \frac{b^2}{a^2 - b^2} \right| + C. \] ### Step 8: Substitute Back for \(t\) Now substitute \(t = \cos x\): \[ I = -\frac{1}{2(a^2 - b^2)} \ln \left| \cos^2 x + \frac{b^2}{a^2 - b^2} \right| + C. \] ### Final Answer Thus, the final answer for the integral is: \[ I = -\frac{1}{2(a^2 - b^2)} \ln \left| \cos^2 x + \frac{b^2}{a^2 - b^2} \right| + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int (sin 2x)/((a^(2) cos^(2)x+b^(2) sin^(2)x))dx

int(sin x cos x)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx

int(sin x cos x)/(sqrt(a^(2)sin^(2)x+b^(2)cos^(2)x))dx sin x

" &."int(sin x cos x)/(a cos^(2)x+b sin^(2)x)dx

Find the value of int_0^(pi/2)(sinx.cosx)/((a^2cos^2x+b^2sin^2x)^2)dx

int(dx)/(sinx cos ^(2)x)

int((sin x cos x))/(cos2x)dx

int (dx)/(sinx cos x+2 cos^2 x)=

int(sinx.cos^3x)/(1+cos^2x)dx

Evaluate: int(sin2x)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx