Home
Class 12
MATHS
intcos^(2) x dx...

`intcos^(2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^2 x \, dx \), we can use the trigonometric identity for cosine. Here’s the step-by-step solution: ### Step 1: Use the identity for \( \cos^2 x \) We know that: \[ \cos^2 x = \frac{1 + \cos(2x)}{2} \] This identity allows us to rewrite the integral. ### Step 2: Substitute the identity into the integral Now we can substitute this identity into our integral: \[ \int \cos^2 x \, dx = \int \frac{1 + \cos(2x)}{2} \, dx \] ### Step 3: Factor out the constant We can factor out the \( \frac{1}{2} \): \[ = \frac{1}{2} \int (1 + \cos(2x)) \, dx \] ### Step 4: Split the integral Now we can split the integral into two parts: \[ = \frac{1}{2} \left( \int 1 \, dx + \int \cos(2x) \, dx \right) \] ### Step 5: Integrate each part 1. The integral of \( 1 \) is simply \( x \). 2. The integral of \( \cos(2x) \) can be solved using the substitution method or known results: \[ \int \cos(2x) \, dx = \frac{1}{2} \sin(2x) \] Putting these results together: \[ = \frac{1}{2} \left( x + \frac{1}{2} \sin(2x) \right) \] ### Step 6: Simplify the expression Now, we can simplify the expression: \[ = \frac{x}{2} + \frac{1}{4} \sin(2x) + C \] where \( C \) is the constant of integration. ### Final Answer: Thus, the final result is: \[ \int \cos^2 x \, dx = \frac{x}{2} + \frac{1}{4} \sin(2x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

intcos^(2)5x dx=

intcos^(-1)xdx=

Evaluate the following integrals: intcos^(4)xdx

Obtain the reduction formula for intcos^(n)xdx

intcos^(3)x" " dx=

solve intcos^2xdx

Evaluate intcos^2xdx

What is intsin^(2)xdx+intcos^(2)xdx equal to ?

If intcos^(7) xdx =Asin^(7)x+Bsin^(5)x+C sin^(3)x+sinx+k , then