Home
Class 12
MATHS
int " cosec"^(4) 2x dx...

`int " cosec"^(4) 2x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \csc^4(2x) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \csc^4(2x) \, dx \] We can express \( \csc^4(2x) \) as \( \csc^2(2x) \cdot \csc^2(2x) \): \[ \int \csc^4(2x) \, dx = \int \csc^2(2x) \cdot \csc^2(2x) \, dx \] ### Step 2: Use the Identity for Cosecant We know that: \[ \csc^2(2x) = 1 + \cot^2(2x) \] Thus, we can rewrite the integral: \[ \int \csc^4(2x) \, dx = \int \csc^2(2x) (1 + \cot^2(2x)) \, dx \] This expands to: \[ \int \csc^2(2x) \, dx + \int \csc^2(2x) \cot^2(2x) \, dx \] ### Step 3: Solve the First Integral The integral \( \int \csc^2(2x) \, dx \) is straightforward: \[ \int \csc^2(2x) \, dx = -\frac{1}{2} \cot(2x) + C_1 \] ### Step 4: Solve the Second Integral Now we focus on the second integral: \[ \int \csc^2(2x) \cot^2(2x) \, dx \] We can use substitution. Let: \[ t = \cot(2x) \implies dt = -2 \csc^2(2x) \, dx \implies dx = -\frac{dt}{2 \csc^2(2x)} \] Substituting this into the integral gives: \[ \int \csc^2(2x) \cot^2(2x) \, dx = \int t^2 \left(-\frac{dt}{2}\right) = -\frac{1}{2} \int t^2 \, dt \] Calculating this integral: \[ -\frac{1}{2} \cdot \frac{t^3}{3} = -\frac{t^3}{6} \] ### Step 5: Substitute Back Substituting back \( t = \cot(2x) \): \[ -\frac{1}{6} \cot^3(2x) \] ### Step 6: Combine Results Now we combine the results from the two integrals: \[ \int \csc^4(2x) \, dx = -\frac{1}{2} \cot(2x) - \frac{1}{6} \cot^3(2x) + C \] ### Final Answer Thus, the final result is: \[ \int \csc^4(2x) \, dx = -\frac{1}{2} \cot(2x) - \frac{1}{6} \cot^3(2x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int "cosec"^(4)x dx

int"cosec"^(2)(2x+5)dx

int"cosec"^(4)x dx is equal to

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

The integral int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x dx is equal to

The integral int sec^(2//3) "x cosec"^(4//3)"x dx" is equal to (here C is a constant of integration)

int cotx cosec^2x dx

Evaluate : int( cosec^2( x/3 ) dx