Home
Class 12
MATHS
int(2x-1)/(sqrt(x^(2)-x-1))dx...

`int(2x-1)/(sqrt(x^(2)-x-1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{2x-1}{\sqrt{x^2 - x - 1}} \, dx \), we can follow these steps: ### Step 1: Identify the substitution We notice that the derivative of the expression inside the square root, \( x^2 - x - 1 \), is \( 2x - 1 \). This suggests that we can use substitution to simplify the integral. **Hint:** Look for a function whose derivative appears in the numerator of the integral. ### Step 2: Make the substitution Let: \[ t = x^2 - x - 1 \] Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 2x - 1 \quad \Rightarrow \quad dt = (2x - 1) \, dx \] This means we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{2x - 1} \] **Hint:** When making a substitution, always differentiate to find \( dt \). ### Step 3: Rewrite the integral Substituting \( t \) and \( dx \) into the integral gives: \[ \int \frac{2x - 1}{\sqrt{t}} \cdot \frac{dt}{2x - 1} = \int \frac{dt}{\sqrt{t}} \] **Hint:** Simplify the integral after substitution to make it easier to integrate. ### Step 4: Integrate The integral \( \int \frac{dt}{\sqrt{t}} \) can be rewritten as: \[ \int t^{-1/2} \, dt \] Using the power rule for integration, we have: \[ \int t^{-1/2} \, dt = 2t^{1/2} + C \] **Hint:** Remember the power rule for integration: \( \int t^n \, dt = \frac{t^{n+1}}{n+1} + C \) for \( n \neq -1 \). ### Step 5: Substitute back Now, we substitute back \( t = x^2 - x - 1 \): \[ 2\sqrt{t} + C = 2\sqrt{x^2 - x - 1} + C \] **Hint:** Always revert back to the original variable after integrating. ### Final Answer Thus, the final result of the integral is: \[ \int \frac{2x-1}{\sqrt{x^2 - x - 1}} \, dx = 2\sqrt{x^2 - x - 1} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(2x+1)/(sqrt(x^(2)+2x-1))dx

int(x+1)/(sqrt(x^(2)+2x+1))dx=

Evaluate: (i) int(a^(x))/(sqrt(1-a^(2x)))dx (ii) int(2x)/(sqrt(1-x^(2)-x^(4)))dx

int(2x+1)/(sqrt(1-x^(2)))dx

int(dx)/(x-sqrt(x^(2)-1))=

int(2x+1dx)/( sqrt(x^(2)+x+1))

2. int(x-1)/(sqrt(2x-x^(2)))dx

int(dx)/(x-sqrt(x^(2)-1))

int(x+1)/(sqrt(2+2x+x^(2)))dx

int((x-1))/(sqrt(x+2))dx