Home
Class 12
MATHS
int" cos"^(4) " 2x dx "...

`int" cos"^(4) " 2x dx "`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^4(2x) \, dx \), we can follow these steps: ### Step 1: Use the identity for \( \cos^2(x) \) We know that: \[ \cos^2(x) = \frac{1 + \cos(2x)}{2} \] Thus, we can express \( \cos^4(2x) \) as: \[ \cos^4(2x) = \left(\cos^2(2x)\right)^2 = \left(\frac{1 + \cos(4x)}{2}\right)^2 \] ### Step 2: Expand the square Now, we expand \( \left(\frac{1 + \cos(4x)}{2}\right)^2 \): \[ \cos^4(2x) = \frac{(1 + \cos(4x))^2}{4} = \frac{1 + 2\cos(4x) + \cos^2(4x)}{4} \] ### Step 3: Substitute \( \cos^2(4x) \) Next, we apply the identity for \( \cos^2(x) \) again to \( \cos^2(4x) \): \[ \cos^2(4x) = \frac{1 + \cos(8x)}{2} \] Substituting this into our expression gives: \[ \cos^4(2x) = \frac{1 + 2\cos(4x) + \frac{1 + \cos(8x)}{2}}{4} \] This simplifies to: \[ \cos^4(2x) = \frac{1 + 2\cos(4x) + \frac{1}{2} + \frac{\cos(8x)}{2}}{4} = \frac{\frac{3}{2} + 2\cos(4x) + \frac{\cos(8x)}{2}}{4} \] \[ = \frac{3 + 4\cos(4x) + \cos(8x)}{8} \] ### Step 4: Integrate term by term Now we can integrate: \[ \int \cos^4(2x) \, dx = \int \frac{3 + 4\cos(4x) + \cos(8x)}{8} \, dx \] This can be split into separate integrals: \[ = \frac{1}{8} \int (3 + 4\cos(4x) + \cos(8x)) \, dx \] \[ = \frac{1}{8} \left( \int 3 \, dx + 4 \int \cos(4x) \, dx + \int \cos(8x) \, dx \right) \] ### Step 5: Calculate each integral 1. \( \int 3 \, dx = 3x \) 2. \( \int \cos(4x) \, dx = \frac{\sin(4x)}{4} \) 3. \( \int \cos(8x) \, dx = \frac{\sin(8x)}{8} \) Putting it all together: \[ = \frac{1}{8} \left( 3x + 4 \cdot \frac{\sin(4x)}{4} + \frac{\sin(8x)}{8} \right) \] \[ = \frac{1}{8} \left( 3x + \sin(4x) + \frac{\sin(8x)}{8} \right) \] \[ = \frac{3x}{8} + \frac{\sin(4x)}{8} + \frac{\sin(8x)}{64} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \cos^4(2x) \, dx = \frac{3x}{8} + \frac{\sin(4x)}{8} + \frac{\sin(8x)}{64} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int cos 4x. cos 2x dx

int cos 4x cos x dx = ?

Evaluate : int ( " 4+3 sin x ")/(" cos"^(2) x) " dx "

int( sin x*cos^(4)x)dx

int(sin x)/(cos^(4)x)dx

(i) int(sinx)/(sqrt(4+ cos^(2) x)) dx " "(ii) int(x^(2))/(sqrt(9+x^(6)))dx

int x^(3)cos x^(4)dx

int (3-4 sin x)/(cos^(2) x) dx=?