Home
Class 12
MATHS
int(2x^(3))/((x^(2)+1)^(2))dx...

`int(2x^(3))/((x^(2)+1)^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{2x^3}{(x^2 + 1)^2} \, dx \), we will use the method of partial fractions. Here’s a step-by-step solution: ### Step 1: Set up the partial fraction decomposition We can express the integrand as: \[ \frac{2x^3}{(x^2 + 1)^2} = \frac{ax + b}{x^2 + 1} + \frac{cx + d}{(x^2 + 1)^2} \] ### Step 2: Multiply through by the denominator Multiplying both sides by \( (x^2 + 1)^2 \) gives: \[ 2x^3 = (ax + b)(x^2 + 1) + (cx + d) \] ### Step 3: Expand the right-hand side Expanding the right-hand side: \[ 2x^3 = ax^3 + bx^2 + ax + b + cx + d \] This simplifies to: \[ 2x^3 = ax^3 + (b + c)x^2 + (a + d)x + b \] ### Step 4: Compare coefficients Now we compare coefficients from both sides: - Coefficient of \( x^3 \): \( a = 2 \) - Coefficient of \( x^2 \): \( b + c = 0 \) - Coefficient of \( x \): \( a + d = 0 \) - Constant term: \( b = 0 \) From \( b = 0 \), we find: - \( c = 0 \) (since \( b + c = 0 \)) - \( d = -2 \) (since \( a + d = 0 \)) Thus, we have: \[ a = 2, \quad b = 0, \quad c = 0, \quad d = -2 \] ### Step 5: Rewrite the integral Substituting back into the integral: \[ \int \frac{2x^3}{(x^2 + 1)^2} \, dx = \int \left( \frac{2x}{x^2 + 1} - \frac{2}{(x^2 + 1)^2} \right) \, dx \] ### Step 6: Integrate each term Now we can integrate each term separately: 1. For \( \int \frac{2x}{x^2 + 1} \, dx \): - Let \( t = x^2 + 1 \), then \( dt = 2x \, dx \). - Thus, \( \int \frac{2x}{x^2 + 1} \, dx = \int \frac{1}{t} \, dt = \ln |t| + C = \ln(x^2 + 1) + C \). 2. For \( \int \frac{2}{(x^2 + 1)^2} \, dx \): - This integral can be solved using the formula \( \int \frac{1}{(x^2 + a^2)^2} \, dx = \frac{x}{2a^2(x^2 + a^2)} + C \). - Here, \( a = 1 \), so: \[ \int \frac{2}{(x^2 + 1)^2} \, dx = -\frac{1}{x^2 + 1} + C \] ### Step 7: Combine the results Putting it all together: \[ \int \frac{2x^3}{(x^2 + 1)^2} \, dx = \ln(x^2 + 1) - \frac{1}{x^2 + 1} + C \] ### Final Answer Thus, the final result is: \[ \int \frac{2x^3}{(x^2 + 1)^2} \, dx = \ln(x^2 + 1) - \frac{1}{x^2 + 1} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7c|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

The integral int(2x-3)/((x^(2)+x+1)^(2)).dx is equal to

int(3x^(2)+1)/((x^(2)-1)^(3))dx

int(2x^(3))/((x+1)(x-3)^(2))dx

int(x^(3)+2)/((x-1)(x-2)^(2))dx

int_(0)^(2)(x^(3))/((x^(2)+1)^(3//2))dx is equal to

int(2+3x^(2))/(x^(2)(1+x^(2)))dx

int(2+3x^(2))/(x^(2)(1+x^(2)))dx

Evaluate int(2+3x^(2))/(x^(2)(1+x^(2)))dx .

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+2))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/(2) , then (a,b) is