Home
Class 12
MATHS
(i) int(sinx)/(sqrt(4+ cos^(2) x)) dx " ...

`(i) int(sinx)/(sqrt(4+ cos^(2) x)) dx " "(ii) int(x^(2))/(sqrt(9+x^(6)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integrals step by step, we will tackle each part separately. ### Part (i): \(\int \frac{\sin x}{\sqrt{4 + \cos^2 x}} \, dx\) **Step 1: Substitution** Let \( t = \cos x \). Then, the derivative \( dt = -\sin x \, dx \) or \( \sin x \, dx = -dt \). **Step 2: Change of Variables** Substituting \( t \) into the integral, we have: \[ \int \frac{\sin x}{\sqrt{4 + \cos^2 x}} \, dx = \int \frac{-dt}{\sqrt{4 + t^2}} \] **Step 3: Simplifying the Integral** This can be rewritten as: \[ -\int \frac{dt}{\sqrt{4 + t^2}} \] **Step 4: Recognizing the Integral Form** The integral \(\int \frac{dt}{\sqrt{a^2 + t^2}}\) has a known solution: \[ \int \frac{dt}{\sqrt{a^2 + t^2}} = \ln |t + \sqrt{a^2 + t^2}| + C \] In our case, \( a = 2 \), so: \[ -\int \frac{dt}{\sqrt{4 + t^2}} = -\ln |t + \sqrt{4 + t^2}| + C \] **Step 5: Back Substitution** Now, substituting back \( t = \cos x \): \[ -\ln |\cos x + \sqrt{4 + \cos^2 x}| + C \] ### Final Answer for Part (i): \[ \int \frac{\sin x}{\sqrt{4 + \cos^2 x}} \, dx = -\ln |\cos x + \sqrt{4 + \cos^2 x}| + C \] --- ### Part (ii): \(\int \frac{x^2}{\sqrt{9 + x^6}} \, dx\) **Step 1: Substitution** Let \( u = x^3 \). Then, the derivative \( du = 3x^2 \, dx \) or \( dx = \frac{du}{3x^2} \). **Step 2: Change of Variables** Substituting \( u \) into the integral, we have: \[ \int \frac{x^2}{\sqrt{9 + x^6}} \, dx = \int \frac{x^2}{\sqrt{9 + u^2}} \cdot \frac{du}{3x^2} = \frac{1}{3} \int \frac{1}{\sqrt{9 + u^2}} \, du \] **Step 3: Recognizing the Integral Form** The integral \(\int \frac{du}{\sqrt{a^2 + u^2}}\) has a known solution: \[ \int \frac{du}{\sqrt{a^2 + u^2}} = \ln |u + \sqrt{a^2 + u^2}| + C \] In our case, \( a = 3 \): \[ \frac{1}{3} \int \frac{1}{\sqrt{9 + u^2}} \, du = \frac{1}{3} \left( \ln |u + \sqrt{9 + u^2}| + C \right) \] **Step 4: Back Substitution** Now, substituting back \( u = x^3 \): \[ \frac{1}{3} \left( \ln |x^3 + \sqrt{9 + x^6}| + C \right) \] ### Final Answer for Part (ii): \[ \int \frac{x^2}{\sqrt{9 + x^6}} \, dx = \frac{1}{3} \ln |x^3 + \sqrt{9 + x^6}| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7e|16 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(3x^(2))/(sqrt(9-16x^(6)))dx

(i) int(2cos x)/(sqrt(1-4cos^(2) x))dx " "(ii) int (x+1)/(sqrt(x^(2)+1))dx

Evaluate: (i) int(e^(x))/(sqrt(4-e^(2x)))dx (ii) int(x^(2))/(sqrt(1-x^(6)))dx

Evaluate : (i) int(sinx)/(sqrt(4cos^(2)x-1))dx (ii) int(sec^(2)x)/(sqrt(tan^(2)x-4))dx

int(sinx)/(sqrt(cos2x))dx=

int(dx)/(sqrt(4-9x^(2)))=?

int(dx)/(sqrt(9-4x^(2)))

int(dx)/(sqrt(9x^(2)-4))

int(x)/(sqrt(9+x^(2)))dx