Home
Class 12
MATHS
(i) int e^(x). "[log (sec x+tan x) + sec...

`(i) int e^(x). "[log (sec x+tan x) + sec x dx "`
`(ii) int (e^(-x)(cos x-sin x))/(cos^(2) x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): Evaluate the integral \[ \int e^x \left( \log(\sec x + \tan x) + \sec x \right) dx \] **Step 1: Identify \( f(x) \) and \( f'(x) \)** Let \[ f(x) = \log(\sec x + \tan x) \] Then, we need to find \( f'(x) \): \[ f'(x) = \frac{d}{dx} \log(\sec x + \tan x) = \frac{1}{\sec x + \tan x} \cdot \frac{d}{dx}(\sec x + \tan x) \] Using the derivatives: \[ \frac{d}{dx}(\sec x) = \sec x \tan x \quad \text{and} \quad \frac{d}{dx}(\tan x) = \sec^2 x \] Thus, \[ f'(x) = \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} \] **Step 2: Verify that \( \sec x = f'(x) \)** Notice that: \[ \sec x = \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} \] This confirms that \( f'(x) = \sec x \). **Step 3: Apply the integration formula** Using the integration formula: \[ \int e^x (f(x) + f'(x)) dx = e^x f(x) + C \] we can write: \[ \int e^x \left( \log(\sec x + \tan x) + \sec x \right) dx = e^x \log(\sec x + \tan x) + C \] ### Final Answer for Part (i): \[ \int e^x \left( \log(\sec x + \tan x) + \sec x \right) dx = e^x \log(\sec x + \tan x) + C \] --- ### Part (ii): Evaluate the integral \[ \int \frac{e^{-x} (\cos x - \sin x)}{\cos^2 x} dx \] **Step 1: Rewrite the integral** We can separate the terms: \[ \int e^{-x} \left( \frac{\cos x}{\cos^2 x} - \frac{\sin x}{\cos^2 x} \right) dx = \int e^{-x} \left( \sec x - \tan x \sec x \right) dx \] **Step 2: Identify \( f(x) \) and \( f'(x) \)** Let \[ f(x) = \sec x \] Then, \[ f'(x) = \sec x \tan x \] Thus, we have: \[ \sec x - \tan x \sec x = f(x) - f'(x) \] **Step 3: Apply the integration formula** Using the integration formula: \[ \int e^{-x} (f(x) - f'(x)) dx = -e^{-x} f(x) + C \] we can write: \[ \int e^{-x} \left( \sec x - \tan x \sec x \right) dx = -e^{-x} \sec x + C \] ### Final Answer for Part (ii): \[ \int \frac{e^{-x} (\cos x - \sin x)}{\cos^2 x} dx = -e^{-x} \sec x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7g|31 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int sec x log (sec x+tan x) dx.

int e^x (tan x+1) sec x dx

int e^(x)sec e^(x)tan e^(x)dx

int(e^(x)-sin x)/(cos x+e^(x))dx

int e ^ (sin x) (x cos x-sec x tan x) dx

int e^(2log sec x)dx

(i) int x sec^2 x dx (ii) int x cos^2 x dx

int sec x ln(sec x+tan x)dx=