Home
Class 12
MATHS
int e^(2x) " (tan x+1)"^(2) dx...

`int e^(2x) " (tan x+1)"^(2) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{2x} ( \tan x + 1 )^2 \, dx \), we will follow these steps: ### Step 1: Expand the integrand First, we expand \( ( \tan x + 1 )^2 \): \[ ( \tan x + 1 )^2 = \tan^2 x + 2 \tan x + 1 \] Thus, the integral becomes: \[ \int e^{2x} ( \tan^2 x + 2 \tan x + 1 ) \, dx \] ### Step 2: Split the integral We can split the integral into three separate integrals: \[ \int e^{2x} \tan^2 x \, dx + 2 \int e^{2x} \tan x \, dx + \int e^{2x} \, dx \] ### Step 3: Solve the third integral The third integral is straightforward: \[ \int e^{2x} \, dx = \frac{1}{2} e^{2x} + C \] ### Step 4: Solve the first integral \( \int e^{2x} \tan^2 x \, dx \) For this integral, we can use integration by parts. Let: - \( u = \tan^2 x \) and \( dv = e^{2x} \, dx \) Then: - \( du = 2 \tan x \sec^2 x \, dx \) - \( v = \frac{1}{2} e^{2x} \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int e^{2x} \tan^2 x \, dx = \frac{1}{2} e^{2x} \tan^2 x - \int \frac{1}{2} e^{2x} (2 \tan x \sec^2 x) \, dx \] This simplifies to: \[ \frac{1}{2} e^{2x} \tan^2 x - \int e^{2x} \tan x \sec^2 x \, dx \] ### Step 5: Solve the second integral \( \int e^{2x} \tan x \sec^2 x \, dx \) We can again use integration by parts. Let: - \( u = \tan x \) and \( dv = e^{2x} \sec^2 x \, dx \) Then: - \( du = \sec^2 x \, dx \) - \( v = \frac{1}{2} e^{2x} \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int e^{2x} \tan x \sec^2 x \, dx = \frac{1}{2} e^{2x} \tan x - \int \frac{1}{2} e^{2x} \sec^2 x \, dx \] ### Step 6: Solve the integral \( \int e^{2x} \sec^2 x \, dx \) This integral can be solved similarly using integration by parts. ### Step 7: Combine all results After solving all parts, we combine the results: \[ \int e^{2x} ( \tan^2 x + 2 \tan x + 1 ) \, dx = \text{(result from first integral)} + 2 \cdot \text{(result from second integral)} + \frac{1}{2} e^{2x} + C \] ### Final Result The final result will be a combination of all the integrals computed above.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7g|31 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int e^(x)tan e^(x)dx

int e^(x)(tan x+sec^(2)x)*dx

Evaluate: int e^(x)(1+tan x+tan^(2)x)dx

int e^(x)sec x(1+tan x)dx

Prove that int e^x (tan^-1 x+1/(1+x^2)) dx=e^x tan^-1x+c

int e^(x) sec x (1 + tan x) dx is equal to

int (e^(2x)-1)/(e^(2x)+1) dx=?

int e^(x)tan(e^(x))dx

Evaluate: int e^(x)(tan^(-1)x+(1)/(1+x^(2)))dx

int e^(x)(tan^(-1)x+(1)/(1+x^(2)))dx