Home
Class 12
MATHS
The value of inte^(tan^-1x) ((1+x+x^2)/...

The value of `inte^(tan^-1x) ((1+x+x^2)/(1+x^2))dx`

Text Solution

Verified by Experts

The correct Answer is:
`x.e^(tan^(-1)x) +c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7g|31 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

The value of int e^(tan-1)x((1+x+x^(2))/(1+x^(2)))dx

int e^(tan^(-1)x)((1+x+x^(2))/(1+x^(2)))dx

int e^(tan^(-1)x)*((1+x+x^(2))/(1+x^(2)))dx

int e^(tan^(-1)x)[(1+x+x^(2))/(1+x^(2))]dx

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

What is the value of int_0^1 (tan^-1 x )/(1+x^2) dx dx

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

inte^(tan^-1x)(1+x/(1+x^2))dx

int(e^(tan^(-1)x))/((1+x^(2))^(2))dx