Home
Class 12
MATHS
int sec x tan x sqrt(sec^(2) x+1)dx...

` int sec x tan x sqrt(sec^(2) x+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sec x \tan x \sqrt{\sec^2 x + 1} \, dx \), we will use the substitution method. Here are the steps to solve the integral: ### Step 1: Substitution Let \( \sec x = t \). Then, the derivative of \( \sec x \) is: \[ \frac{d}{dx}(\sec x) = \sec x \tan x \quad \Rightarrow \quad \sec x \tan x \, dx = dt \] Thus, we can rewrite the integral in terms of \( t \): \[ \int \sec x \tan x \sqrt{\sec^2 x + 1} \, dx = \int \sqrt{t^2 + 1} \, dt \] ### Step 2: Simplifying the Integral Now, we need to evaluate the integral: \[ \int \sqrt{t^2 + 1} \, dt \] This integral can be solved using the formula: \[ \int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln |x + \sqrt{x^2 + a^2}| + C \] In our case, \( a = 1 \). Therefore, we have: \[ \int \sqrt{t^2 + 1} \, dt = \frac{t}{2} \sqrt{t^2 + 1} + \frac{1}{2} \ln |t + \sqrt{t^2 + 1}| + C \] ### Step 3: Back Substitution Now, we substitute back \( t = \sec x \): \[ = \frac{\sec x}{2} \sqrt{\sec^2 x + 1} + \frac{1}{2} \ln |\sec x + \sqrt{\sec^2 x + 1}| + C \] ### Step 4: Simplifying the Expression Since \( \sqrt{\sec^2 x + 1} = \sqrt{(\sec^2 x + \tan^2 x)} = \sqrt{1 + \tan^2 x} = \sec x \), we can simplify further: \[ = \frac{\sec x}{2} \cdot \sec x + \frac{1}{2} \ln |\sec x + \sqrt{\sec^2 x + 1}| + C \] \[ = \frac{\sec^2 x}{2} + \frac{1}{2} \ln |\sec x + \sec x| + C \] \[ = \frac{\sec^2 x}{2} + \frac{1}{2} \ln |2 \sec x| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \sec x \tan x \sqrt{\sec^2 x + 1} \, dx = \frac{\sec^2 x}{2} + \frac{1}{2} \ln |2 \sec x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7j|30 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7h|15 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int sec x tan x sqrt(4 sec^(2) x- 1 dx)

int sec x tan x sqrt(tan^(2) x-4) dx

int_(0)^( pi)(x sec x tan x)/(1+sec^(2)x)dx=(pi^(2))/(4)

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is

int sqrt(1+sec x)dx

int(sec^(2)x)/(tan x)dx

int(sec^(2)x)/(tan x)dx

int(secx- tan x)/(sec x+ tan x) dx

int(tan x+sec x-1)/(tan x-sec x+1)dx

int(sec x+tan x)^(2)dx