Home
Class 12
MATHS
(i) int (1)/(x(x+1)^(2))dx (ii) int (1...

`(i) int (1)/(x(x+1)^(2))dx`
`(ii) int (1)/((x+1)^(2)(x-1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): **Integral to solve:** \[ \int \frac{1}{x(x+1)^2} \, dx \] **Step 1: Partial Fraction Decomposition** We start by expressing the integrand in terms of partial fractions: \[ \frac{1}{x(x+1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2} \] Multiplying through by the denominator \(x(x+1)^2\) gives: \[ 1 = A(x+1)^2 + Bx(x+1) + Cx \] **Step 2: Expand and Collect Terms** Expanding the right-hand side: \[ 1 = A(x^2 + 2x + 1) + B(x^2 + x) + Cx \] \[ = (A + B)x^2 + (2A + B + C)x + A \] **Step 3: Set Up System of Equations** Now, we equate coefficients from both sides: 1. \(A + B = 0\) (coefficient of \(x^2\)) 2. \(2A + B + C = 0\) (coefficient of \(x\)) 3. \(A = 1\) (constant term) From the third equation, we find \(A = 1\). Substituting \(A\) into the first equation: \[ 1 + B = 0 \implies B = -1 \] Substituting \(A\) and \(B\) into the second equation: \[ 2(1) - 1 + C = 0 \implies 2 - 1 + C = 0 \implies C = -1 \] Thus, we have: \[ A = 1, \quad B = -1, \quad C = -1 \] **Step 4: Rewrite the Integral** Substituting back into the partial fraction decomposition: \[ \int \left( \frac{1}{x} - \frac{1}{x+1} - \frac{1}{(x+1)^2} \right) \, dx \] **Step 5: Integrate Each Term** Now we integrate term by term: \[ = \int \frac{1}{x} \, dx - \int \frac{1}{x+1} \, dx - \int \frac{1}{(x+1)^2} \, dx \] This gives: \[ = \ln |x| - \ln |x+1| + \frac{1}{x+1} + C \] **Final Result for Part (i):** \[ \ln \left| \frac{x}{x+1} \right| + \frac{1}{x+1} + C \] --- ### Part (ii): **Integral to solve:** \[ \int \frac{1}{(x+1)^2(x-1)} \, dx \] **Step 1: Partial Fraction Decomposition** We express the integrand in terms of partial fractions: \[ \frac{1}{(x+1)^2(x-1)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2} \] Multiplying through by the denominator \((x+1)^2(x-1)\) gives: \[ 1 = A(x+1)^2 + B(x-1)(x+1) + C(x-1) \] **Step 2: Expand and Collect Terms** Expanding the right-hand side: \[ 1 = A(x^2 + 2x + 1) + B(x^2 - 1) + C(x - 1) \] \[ = (A + B)x^2 + (2A + C)x + (A - C) \] **Step 3: Set Up System of Equations** Equating coefficients: 1. \(A + B = 0\) (coefficient of \(x^2\)) 2. \(2A + C = 0\) (coefficient of \(x\)) 3. \(A - C = 1\) (constant term) From the first equation, \(B = -A\). Substituting into the second: \[ 2A + C = 0 \implies C = -2A \] Substituting \(C\) into the third equation: \[ A - (-2A) = 1 \implies 3A = 1 \implies A = \frac{1}{3} \] Then, substituting back: \[ B = -\frac{1}{3}, \quad C = -\frac{2}{3} \] **Step 4: Rewrite the Integral** Substituting back into the partial fraction decomposition: \[ \int \left( \frac{1/3}{x-1} - \frac{1/3}{x+1} - \frac{2/3}{(x+1)^2} \right) \, dx \] **Step 5: Integrate Each Term** Now we integrate term by term: \[ = \frac{1}{3} \int \frac{1}{x-1} \, dx - \frac{1}{3} \int \frac{1}{x+1} \, dx - \frac{2}{3} \int \frac{1}{(x+1)^2} \, dx \] This gives: \[ = \frac{1}{3} \ln |x-1| - \frac{1}{3} \ln |x+1| + \frac{2}{3(x+1)} + C \] **Final Result for Part (ii):** \[ \frac{1}{3} \ln \left| \frac{x-1}{x+1} \right| + \frac{2}{3(x+1)} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7k|27 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7l|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7i|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) (x^(2)+3x-1)/((x+1)^(2))dx (ii) int(2x-1)/((x-1)^(2))dx

(i) int 1/((x^2+1)(x^2+4)) dx (ii) int 1/((x^2+1)(x^2+2)) dx

int (dx)/((x+1)(2x+1)) (ii) int (x-1)/((x-2)(x-3)) dx .

(i) int(1)/((1+cos2x))dx , (ii) int (1)/((1-cos2x)) dx

Evaluate: (i) int(1)/(a^(2)x^(2)-b^(2))dx (ii) int(x^(2)-1)/(x^(2)+4)dx

Evaluate: (i) int(1)/(sqrt(x))(1+(1)/(x))dx (ii) int(x^(6)+1)/(x^(2)+1)dx

(i) int 1/(xsqrt(x-1))dx (ii) int 1/((x+2)sqrt(x+3)) dx

(i) int 1/(1-x^2) dx (ii) int 1/(x^2-9) dx

(i) int(1)/(5x+1)dx " "(ii)int(1)/(sqrt(x+1+)sqrt(x))dx