Home
Class 12
MATHS
int(1)/(sqrt(1+x-x^(2)))dx...

`int(1)/(sqrt(1+x-x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{1 + x - x^2}} \, dx \), we will follow these steps: ### Step 1: Rewrite the expression under the square root We start with the integral: \[ \int \frac{1}{\sqrt{1 + x - x^2}} \, dx \] First, we rewrite the expression inside the square root: \[ 1 + x - x^2 = 1 - (x^2 - x) = 1 - (x^2 - x + \frac{1}{4} - \frac{1}{4}) = 1 - \left( (x - \frac{1}{2})^2 - \frac{1}{4} \right) \] This simplifies to: \[ 1 - (x - \frac{1}{2})^2 + \frac{1}{4} = \frac{5}{4} - (x - \frac{1}{2})^2 \] ### Step 2: Substitute into the integral Now, we can rewrite the integral: \[ \int \frac{1}{\sqrt{\frac{5}{4} - (x - \frac{1}{2})^2}} \, dx \] This can be simplified further: \[ = \int \frac{1}{\sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - (x - \frac{1}{2})^2}} \, dx \] ### Step 3: Use trigonometric substitution We can use the substitution: \[ x - \frac{1}{2} = \frac{\sqrt{5}}{2} \sin \theta \] Then, \( dx = \frac{\sqrt{5}}{2} \cos \theta \, d\theta \). ### Step 4: Change the limits of integration The integral becomes: \[ = \int \frac{\frac{\sqrt{5}}{2} \cos \theta}{\sqrt{\left(\frac{\sqrt{5}}{2}\right)^2 - \left(\frac{\sqrt{5}}{2} \sin \theta\right)^2}} \, d\theta \] This simplifies to: \[ = \int \frac{\frac{\sqrt{5}}{2} \cos \theta}{\sqrt{\frac{5}{4}(1 - \sin^2 \theta)}} \, d\theta \] \[ = \int \frac{\frac{\sqrt{5}}{2} \cos \theta}{\frac{\sqrt{5}}{2} \cos \theta} \, d\theta = \int d\theta \] ### Step 5: Integrate The integral of \( d\theta \) is simply: \[ \theta + C \] ### Step 6: Back substitute Now we need to back substitute for \( \theta \): \[ \theta = \sin^{-1}\left(\frac{2(x - \frac{1}{2})}{\sqrt{5}}\right) = \sin^{-1}\left(\frac{2x - 1}{\sqrt{5}}\right) \] ### Final Result Thus, the final result for the integral is: \[ \int \frac{1}{\sqrt{1 + x - x^2}} \, dx = \sin^{-1}\left(\frac{2x - 1}{\sqrt{5}}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7l|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(2x+1)sqrt(1-x-x^(2))dx

int(x-1)sqrt(1-x-x^(2))dx

int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int(sin^(-1)x)/(sqrt(1-x^(2)))dx

int(sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate: int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

I=int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

Find :int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate: int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate: int(x sin^(-1)x)/(sqrt(1-x^(2)))dx