Home
Class 12
MATHS
int(x+1)/(sqrt(2x^(2)+x-3))dx...

`int(x+1)/(sqrt(2x^(2)+x-3))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x+1}{\sqrt{2x^2 + x - 3}} \, dx, \] we can start by rewriting the numerator \(x + 1\) in a more convenient form. ### Step 1: Rewrite the numerator We can express \(x + 1\) as a combination of the derivative of the denominator and a constant. We can write: \[ x + 1 = \frac{1}{4} \cdot 4x + \frac{3}{4}. \] ### Step 2: Substitute into the integral Now we can substitute this back into the integral: \[ \int \frac{x + 1}{\sqrt{2x^2 + x - 3}} \, dx = \int \frac{\frac{3}{4} + \frac{1}{4} \cdot 4x}{\sqrt{2x^2 + x - 3}} \, dx. \] ### Step 3: Split the integral This can be split into two separate integrals: \[ = \frac{3}{4} \int \frac{1}{\sqrt{2x^2 + x - 3}} \, dx + \frac{1}{4} \int \frac{4x}{\sqrt{2x^2 + x - 3}} \, dx. \] ### Step 4: Solve the first integral For the first integral, we can use a substitution. Let: \[ u = 2x^2 + x - 3 \implies du = (4x + 1) \, dx. \] This means: \[ dx = \frac{du}{4x + 1}. \] However, we need to express \(x\) in terms of \(u\). This can be complex, so we will focus on the second integral first. ### Step 5: Solve the second integral For the second integral: \[ \frac{1}{4} \int \frac{4x}{\sqrt{2x^2 + x - 3}} \, dx = \int \frac{x}{\sqrt{2x^2 + x - 3}} \, dx. \] Using the substitution \(u = 2x^2 + x - 3\), we have: \[ \int \frac{x}{\sqrt{u}} \cdot \frac{du}{4x + 1}. \] ### Step 6: Combine the integrals After finding both integrals, we combine them back together. The first integral will yield a logarithmic function, and the second integral will also yield a logarithmic function due to the form of the integrand. ### Final Answer After evaluating both integrals and simplifying, we arrive at: \[ \frac{3}{4\sqrt{2}} \log\left|4x + 1 + \sqrt{2x^2 + x - 3}\right| + C, \] where \(C\) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7l|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(2x^(2)+2x+3))dx

int(1)/(sqrt(2x^(2)+3x-2))dx

int(2x-1)/(sqrt(x^(2)-x-1))dx

int(4x+1)/(sqrt(2x^2+x-3))dx=?

int(2x-1)/(sqrt(x^(2)-x+1))dx

Evaluate int(1)/(sqrt(x^(2)-2x+3))dx

int((2x-1))/(sqrt(x^(2)-x-1))dx

int(x+1)/(sqrt(x^(2)+2x+1))dx=

int(2x+1)/(sqrt(x^2+2x+3))dx=

int(2x+3)/(sqrt(x^(2)+x+1))dx