Home
Class 12
MATHS
int(2x+5)/(sqrt(x^(2)+3x+1))dx...

`int(2x+5)/(sqrt(x^(2)+3x+1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{2x + 5}{\sqrt{x^2 + 3x + 1}} \, dx\), we can follow these steps: ### Step 1: Rewrite the Numerator We want to express the numerator \(2x + 5\) in a way that relates it to the derivative of the denominator. We can write: \[ 2x + 5 = 2x + 3 + 2 = (2x + 3) + 2 \] This allows us to separate the integral into two parts: \[ \int \frac{2x + 5}{\sqrt{x^2 + 3x + 1}} \, dx = \int \frac{(2x + 3) + 2}{\sqrt{x^2 + 3x + 1}} \, dx \] ### Step 2: Separate the Integral Now we can separate the integral: \[ \int \frac{2x + 5}{\sqrt{x^2 + 3x + 1}} \, dx = \int \frac{2x + 3}{\sqrt{x^2 + 3x + 1}} \, dx + \int \frac{2}{\sqrt{x^2 + 3x + 1}} \, dx \] ### Step 3: Solve the First Integral For the first integral \(\int \frac{2x + 3}{\sqrt{x^2 + 3x + 1}} \, dx\), we can use substitution. Let: \[ u = x^2 + 3x + 1 \quad \Rightarrow \quad du = (2x + 3) \, dx \] Thus, the integral becomes: \[ \int \frac{du}{\sqrt{u}} = 2\sqrt{u} + C_1 = 2\sqrt{x^2 + 3x + 1} + C_1 \] ### Step 4: Solve the Second Integral Now for the second integral \(\int \frac{2}{\sqrt{x^2 + 3x + 1}} \, dx\), we need to rewrite the expression under the square root. We complete the square: \[ x^2 + 3x + 1 = (x + \frac{3}{2})^2 - \frac{5}{4} \] Thus, we can rewrite the integral as: \[ \int \frac{2}{\sqrt{(x + \frac{3}{2})^2 - \frac{5}{4}}} \, dx \] This is of the form \(\int \frac{1}{\sqrt{x^2 - a^2}} \, dx\), which integrates to: \[ 2 \log \left| x + \frac{3}{2} + \sqrt{(x + \frac{3}{2})^2 - \frac{5}{4}} \right| + C_2 \] ### Step 5: Combine the Results Combining both parts, we have: \[ \int \frac{2x + 5}{\sqrt{x^2 + 3x + 1}} \, dx = 2\sqrt{x^2 + 3x + 1} + 2 \log \left| x + \frac{3}{2} + \sqrt{(x + \frac{3}{2})^2 - \frac{5}{4}} \right| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{2x + 5}{\sqrt{x^2 + 3x + 1}} \, dx = 2\sqrt{x^2 + 3x + 1} + 2 \log \left| x + \frac{3}{2} + \sqrt{(x + \frac{3}{2})^2 - \frac{5}{4}} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7l|16 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7j|30 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(2x+3)/(sqrt(x^(2)+x+1))dx

int(6x-5)/(sqrt(3x^(2)-5x+1))dx

int(dx)/(sqrt(x^(2)-3x+5)

Evaluate: (i) int(4x+2)sqrt(x^(2)+x+1)dx (ii) int(4x+3)/(sqrt(2x^(2)+3x+1))dx

int(1)/(sqrt((x^(2)+3x+1)))dx

int(1)/(sqrt(x^(2)|3x|d1))dx

int(dx)/(sqrt(4x^(2)-3x+5))

int(dx)/(sqrt(4x^(2)-3x+5))

int(dx)/(sqrt(4x^(2)-3x+5))

int(dx)/(sqrt(x^(2)-3x+5))