Home
Class 12
MATHS
int(1)^(3)(1)/(x)dx...

`int_(1)^(3)(1)/(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{3} \frac{1}{x} \, dx \), we will follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{1}^{3} \frac{1}{x} \, dx \] ### Step 2: Find the antiderivative The antiderivative of \( \frac{1}{x} \) is: \[ \int \frac{1}{x} \, dx = \log |x| + C \] where \( C \) is the constant of integration. ### Step 3: Evaluate the definite integral Now we will evaluate the definite integral from 1 to 3: \[ I = \left[ \log |x| \right]_{1}^{3} \] This means we will substitute the upper limit (3) and the lower limit (1) into the antiderivative. ### Step 4: Substitute the limits Substituting the upper limit: \[ \log |3| = \log 3 \] Substituting the lower limit: \[ \log |1| = \log 1 \] ### Step 5: Calculate the values We know that: \[ \log 1 = 0 \] Thus, we can now compute: \[ I = \log 3 - \log 1 = \log 3 - 0 = \log 3 \] ### Final Answer Therefore, the value of the integral is: \[ \int_{1}^{3} \frac{1}{x} \, dx = \log 3 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(3)(1)/(x+x^(2))dx=

int_(1)^(3)(1)/(x+x^(2))dx=

Evaluate: int_(1)^(3)(1)/(x^(2)(x+1))dx

Evaluate: int_(1)^(3)(1)/(x^(2)(x+1))dx

int_(1)^(3)(1)/(x)(cos log|x|)dx

int_(1)^(3)(2x+1)dx

The value of the integral int_(1)^(3)|(x-1)(x-2)|dx is

" (1) "int_(1)^(3)(2x+1)^(3)dx

int_(1)^(3)(2x+1)^(3)dx

int_(0)^(1)(1)/(3+4x)dx