Home
Class 12
MATHS
int(0)^(pi//6) sqrt(1-sin 2x) dx...

`int_(0)^(pi//6) sqrt(1-sin 2x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^{\frac{\pi}{6}} \sqrt{1 - \sin 2x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( 1 - \sin 2x \). We know that: \[ 1 = \sin^2 x + \cos^2 x \] And we can express \( \sin 2x \) as: \[ \sin 2x = 2 \sin x \cos x \] Thus, we can rewrite the expression under the square root: \[ 1 - \sin 2x = 1 - 2 \sin x \cos x = \sin^2 x + \cos^2 x - 2 \sin x \cos x = (\sin x - \cos x)^2 \] ### Step 2: Substitute into the integral Now we substitute this back into the integral: \[ \int_0^{\frac{\pi}{6}} \sqrt{1 - \sin 2x} \, dx = \int_0^{\frac{\pi}{6}} \sqrt{(\sin x - \cos x)^2} \, dx \] Since \( \sin x - \cos x \) is non-negative in the interval \( [0, \frac{\pi}{6}] \), we can simplify: \[ \sqrt{(\sin x - \cos x)^2} = \sin x - \cos x \] Thus, the integral becomes: \[ \int_0^{\frac{\pi}{6}} (\sin x - \cos x) \, dx \] ### Step 3: Integrate Now we can integrate: \[ \int (\sin x - \cos x) \, dx = -\cos x - \sin x + C \] Now we evaluate the definite integral from \( 0 \) to \( \frac{\pi}{6} \): \[ \left[-\cos x - \sin x\right]_0^{\frac{\pi}{6}} = \left[-\cos\left(\frac{\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\right] - \left[-\cos(0) - \sin(0)\right] \] ### Step 4: Calculate the limits Now we calculate the values: - At \( x = \frac{\pi}{6} \): \[ -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}, \quad -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2} \] So: \[ -\cos\left(\frac{\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2} - \frac{1}{2} = -\frac{\sqrt{3} + 1}{2} \] - At \( x = 0 \): \[ -\cos(0) = -1, \quad -\sin(0) = 0 \] So: \[ -\cos(0) - \sin(0) = -1 \] ### Step 5: Final calculation Putting it all together: \[ \left[-\cos\left(\frac{\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\right] - \left[-\cos(0) - \sin(0)\right] = \left(-\frac{\sqrt{3} + 1}{2}\right) - (-1) \] This simplifies to: \[ -\frac{\sqrt{3} + 1}{2} + 1 = 1 - \frac{\sqrt{3} + 1}{2} = \frac{2 - (\sqrt{3} + 1)}{2} = \frac{1 - \sqrt{3}}{2} \] ### Final Answer Thus, the value of the integral \( \int_0^{\frac{\pi}{6}} \sqrt{1 - \sin 2x} \, dx \) is: \[ \frac{1 - \sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7o|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7p|28 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^( pi/2)sqrt(1-sin x)dx

Evaluate : int_(0)^(pi//2) sqrt(1+ sin 2x dx)

int_(0)^((pi)/(4)) sqrt(1+sin 2x) dx =

int_(0)^(pi//2)sqrt(1-sin 2 x dx) is equal to

int_(0)^((pi)/(4))sqrt(1+sin2x)dx

" (a) "int_(0)^( pi/6)sqrt(1-sin2x)dx" का मान ज्ञात कीजिए "

Evaluate: int_(0)^( pi/4)sqrt(1+sin2x)dx (ii) int_(0)^( pi/4)sqrt(1-sin2x)dx

Evaluate : (i) int_(0)^(pi//4)sqrt(1+sin2x)\ dx (ii) int_(0)^(pi//2)sqrt(1+cos2x)\ dx