Home
Class 12
MATHS
int(0)^(1) (1)/(sqrt(1-x^(2)))dx...

`int_(0)^(1) (1)/(sqrt(1-x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{0}^{1} \frac{1}{\sqrt{1-x^2}} \, dx, \] we will follow these steps: ### Step 1: Identify the Integral The integral we need to evaluate is \[ \int \frac{1}{\sqrt{1-x^2}} \, dx. \] This is a standard integral that can be solved using the formula: \[ \int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1}\left(\frac{x}{a}\right) + C, \] where \( a = 1 \) in our case. ### Step 2: Apply the Formula Using the formula, we have: \[ \int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1}(x) + C. \] ### Step 3: Evaluate the Definite Integral Since we are dealing with a definite integral from 0 to 1, we will evaluate: \[ \left[ \sin^{-1}(x) \right]_{0}^{1}. \] ### Step 4: Substitute the Limits Now we will substitute the limits into the evaluated integral: \[ \sin^{-1}(1) - \sin^{-1}(0). \] ### Step 5: Calculate the Values We know that: - \(\sin^{-1}(1) = \frac{\pi}{2}\) - \(\sin^{-1}(0) = 0\) Thus, we have: \[ \frac{\pi}{2} - 0 = \frac{\pi}{2}. \] ### Final Answer Therefore, the value of the integral is: \[ \int_{0}^{1} \frac{1}{\sqrt{1-x^2}} \, dx = \frac{\pi}{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7o|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7p|28 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(x)/(sqrt(1-x^(2)))dx=

int_(0)^(1)(dx)/(sqrt(1-x^(2)))

int_(0)^(1)(dx)/(sqrt(1-x^(2)))

Evaluate the following definite integral: int_(0)^(1/2)(1)/(sqrt(1-x^(2)))dx

Evaluate : int_(0)^(1) (x)/(sqrt(1+x^(2)))dx

If I=int_(0)^(1//2) (1)/(sqrt(1-x^(2n)))dx then which one of the following is not true ?

int_(0)^(1) (x)/(sqrt(1+x^(2)))dx=?

int_(0)^(1)(dx)/(sqrt((1-x^(2))))

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx

int_(0)^(1) (x)/(sqrt(1 + x^(2))) dx