Home
Class 12
MATHS
int(-pi//4)^(pi//4) "cosec"^(2) x dx...

`int_(-pi//4)^(pi//4) "cosec"^(2) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \csc^2 x \, dx \), we can follow these steps: ### Step 1: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \] In our case, \( f(x) = \csc^2 x \) and \( a = \frac{\pi}{4} \). Therefore, we can rewrite the integral as: \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \csc^2 x \, dx = 2 \int_{0}^{\frac{\pi}{4}} \csc^2 x \, dx \] ### Step 2: Integrate \( \csc^2 x \) The integral of \( \csc^2 x \) is known: \[ \int \csc^2 x \, dx = -\cot x + C \] Thus, we can evaluate the integral from \( 0 \) to \( \frac{\pi}{4} \): \[ \int_{0}^{\frac{\pi}{4}} \csc^2 x \, dx = \left[-\cot x\right]_{0}^{\frac{\pi}{4}} \] ### Step 3: Evaluate the limits Now we need to evaluate \( -\cot x \) at the limits \( 0 \) and \( \frac{\pi}{4} \): 1. At \( x = \frac{\pi}{4} \): \[ -\cot\left(\frac{\pi}{4}\right) = -1 \] 2. At \( x = 0 \): \[ -\cot(0) = -\infty \quad (\text{cotangent is undefined at } 0) \] ### Step 4: Combine the results Putting it all together, we have: \[ \int_{0}^{\frac{\pi}{4}} \csc^2 x \, dx = -1 - (-\infty) = \infty \] Thus, \[ 2 \int_{0}^{\frac{\pi}{4}} \csc^2 x \, dx = 2 \cdot \infty = \infty \] ### Conclusion Therefore, the value of the integral \( \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \csc^2 x \, dx \) is: \[ \text{The integral diverges to } \infty. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7o|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7p|28 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//4)^(pi//4)cosec^(2)xdx

(i) int_0^(pi//4) sec x dx (ii) int_(pi//6)^(pi//4) cosec x dx

int _(pi//4)^(pi//2) "cosec"^(2)dx is equal to

Evaluate int _(-pi//2)^(pi//4) sin ^(2) x dx .

int_(-pi//4)^(pi//4)sin^(2)x dx=

int_(pi//6)^(pi//4)cosec 2x dx=

(i) int_0^(pi//2) sin^2 dx =pi/4 (ii) int_0^(pi//2) cos^2x dx=pi/4 (iii) int_(-pi//4)^(pi//4) sin^2 x dx=pi/4-1/2 (iv) int_(-pi//4)^(pi//4) cos^2x dx=pi/4+1/2

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is