Home
Class 12
MATHS
int(0)^(pi//2) sqrt(1- cos 2x) dx...

`int_(0)^(pi//2) sqrt(1- cos 2x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \cos 2x} \, dx \), we can follow these steps: ### Step 1: Simplify the expression under the square root We know that: \[ \cos 2x = 1 - 2\sin^2 x \] Thus, \[ 1 - \cos 2x = 1 - (1 - 2\sin^2 x) = 2\sin^2 x \] So we can rewrite the integral as: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \cos 2x} \, dx = \int_{0}^{\frac{\pi}{2}} \sqrt{2\sin^2 x} \, dx \] ### Step 2: Factor out the constant The square root can be simplified: \[ \sqrt{2\sin^2 x} = \sqrt{2} \cdot \sin x \] Thus, the integral becomes: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{2} \cdot \sin x \, dx \] ### Step 3: Factor out the constant from the integral We can factor out the constant \( \sqrt{2} \): \[ \sqrt{2} \int_{0}^{\frac{\pi}{2}} \sin x \, dx \] ### Step 4: Evaluate the integral of \( \sin x \) The integral of \( \sin x \) is: \[ \int \sin x \, dx = -\cos x \] So we evaluate: \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = [-\cos x]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) - (-\cos(0)) = 0 - (-1) = 1 \] ### Step 5: Combine the results Now substituting back, we have: \[ \sqrt{2} \cdot 1 = \sqrt{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \cos 2x} \, dx = \sqrt{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7o|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7p|28 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int _(0)^(pi//2) sqrt(1+ cos x dx)

Evaluate: int_(0)^( pi/2)sqrt(1-cos2x)dx

int_(0)^(pi//6) sqrt(1-sin 2x) dx

Evaluate : (i) int_(0)^(pi//4)sqrt(1+sin2x)\ dx (ii) int_(0)^(pi//2)sqrt(1+cos2x)\ dx

int _(0) ^(pi//2) sqrt(1-cos x )" "dx=

int_(0)^(pi//2)sqrt(1+cos2x)dx=?

int_(0)^(pi//4)sqrt(1+cos2x)dx

int_(-pi//2)^(pi//2)sqrt(1-cos 2x)dx=

int_(0)^( pi/2)sqrt(1-sin x)dx