Home
Class 12
MATHS
int(0)^(pi//4) (1)/(1+cos 2x)dx...

`int_(0)^(pi//4) (1)/(1+cos 2x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{0}^{\frac{\pi}{4}} \frac{1}{1 + \cos 2x} \, dx, \] we can follow these steps: ### Step 1: Simplify the integrand We know that \[ \cos 2x = 2\cos^2 x - 1. \] Thus, \[ 1 + \cos 2x = 1 + (2\cos^2 x - 1) = 2\cos^2 x. \] Therefore, we can rewrite the integrand: \[ \frac{1}{1 + \cos 2x} = \frac{1}{2\cos^2 x}. \] ### Step 2: Rewrite the integral Now, we can express the integral as: \[ \int_{0}^{\frac{\pi}{4}} \frac{1}{2\cos^2 x} \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec^2 x \, dx. \] ### Step 3: Integrate The integral of \(\sec^2 x\) is \(\tan x\). Thus, we have: \[ \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec^2 x \, dx = \frac{1}{2} \left[ \tan x \right]_{0}^{\frac{\pi}{4}}. \] ### Step 4: Evaluate the limits Now we evaluate the limits: \[ = \frac{1}{2} \left( \tan\left(\frac{\pi}{4}\right) - \tan(0) \right). \] We know that: \[ \tan\left(\frac{\pi}{4}\right) = 1 \quad \text{and} \quad \tan(0) = 0. \] Thus, we have: \[ = \frac{1}{2} (1 - 0) = \frac{1}{2}. \] ### Final Answer Therefore, the value of the integral is: \[ \int_{0}^{\frac{\pi}{4}} \frac{1}{1 + \cos 2x} \, dx = \frac{1}{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7o|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7p|28 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) (1)/(4+3 cos x)dx

int_(0)^( pi/4)(1)/(cos^(2)x)dx

int_(0)^(pi//4)(dx)/((1+cos2x))

int_(0)^(pi//2)(1)/(5+4cos x)dx=

int_(0)^(pi//2) (dx)/(1+2 cos x)

int_(0)^(pi//2)(1)/(2+cos x)dx=

Evaluate : int _(0)^(pi//2) 1/(1 + cos x) dx

int_(0)^(pi) (1)/(5+2 cos x)dx

int_(0)^(pi/2)(x)/(1+cos x)dx =

int_(0)^( pi)(1)/(1+e^(cos x))dx