Home
Class 12
MATHS
int(0)^(pi//2) x^(2) cos x dx...

`int_(0)^(pi//2) x^(2) cos x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} x^2 \cos x \, dx \), we will use integration by parts. The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = x^2 \) (so that \( du = 2x \, dx \)) - \( dv = \cos x \, dx \) (so that \( v = \sin x \)) ### Step 2: Apply Integration by Parts Using the integration by parts formula: \[ I = \int x^2 \cos x \, dx = u v - \int v \, du \] Substituting the values we have: \[ I = x^2 \sin x \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin x \cdot 2x \, dx \] ### Step 3: Evaluate the Boundary Term Now evaluate \( x^2 \sin x \) at the limits \( 0 \) and \( \frac{\pi}{2} \): \[ x^2 \sin x \Big|_{0}^{\frac{\pi}{2}} = \left( \left(\frac{\pi}{2}\right)^2 \sin\left(\frac{\pi}{2}\right) \right) - \left( 0^2 \sin(0) \right) = \left( \frac{\pi^2}{4} \cdot 1 \right) - 0 = \frac{\pi^2}{4} \] ### Step 4: Simplify the Remaining Integral Now we need to compute the integral \( \int_{0}^{\frac{\pi}{2}} 2x \sin x \, dx \). We will apply integration by parts again. Let: - \( u = 2x \) (so that \( du = 2 \, dx \)) - \( dv = \sin x \, dx \) (so that \( v = -\cos x \)) Applying integration by parts again: \[ \int 2x \sin x \, dx = 2x (-\cos x) \Big|_{0}^{\frac{\pi}{2}} - \int -\cos x \cdot 2 \, dx \] ### Step 5: Evaluate the Boundary Term Evaluate \( 2x (-\cos x) \) at the limits \( 0 \) and \( \frac{\pi}{2} \): \[ 2x (-\cos x) \Big|_{0}^{\frac{\pi}{2}} = \left( 2\left(\frac{\pi}{2}\right)(-\cos\left(\frac{\pi}{2}\right)) \right) - \left( 2(0)(-\cos(0)) \right) = 0 - 0 = 0 \] ### Step 6: Calculate the Remaining Integral Now we compute the remaining integral: \[ \int -2 \cos x \, dx = -2 \sin x \Big|_{0}^{\frac{\pi}{2}} = -2(1 - 0) = -2 \] ### Step 7: Combine Results Now substitute back into the equation for \( I \): \[ I = \frac{\pi^2}{4} - 0 + 2 = \frac{\pi^2}{4} + 2 \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} x^2 \cos x \, dx = \frac{\pi^2}{4} + 2 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7o|32 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7p|28 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7m|8 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi//2) x^2 cos 2x dx

int_(0)^( pi/2)sin^(2)x cos x dx

int_(0)^(pi//2) e^(x) cos x" " dx=

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2) x sin cos x dx=?

int_(0)^(pi/2)(sin^(2)x*cos x)dx=

int_(0)^(pi//2) sin^(2) x cos ^(2) x dx

int_(0)^(pi//6)(2+3x^(2))cos3x dx=

int _(0)^(pi//2) x sin^(2) x cos^(2) x dx is equal to