Home
Class 12
MATHS
int(0)^(pi//2) e^(x) (sin x + cos x) dx...

`int_(0)^(pi//2) e^(x) (sin x + cos x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} e^{x} (\sin x + \cos x) \, dx \), we can use integration by parts or a known formula for integrals involving exponentials and trigonometric functions. ### Step-by-Step Solution: 1. **Recognize the Integral Form**: We have the integral in the form \( \int e^{x} (f(x) + f'(x)) \, dx \) where \( f(x) = \sin x \) and \( f'(x) = \cos x \). 2. **Use the Integration Formula**: The formula states that: \[ \int e^{x} (f(x) + f'(x)) \, dx = e^{x} f(x) + C \] Therefore, we can rewrite our integral: \[ \int e^{x} (\sin x + \cos x) \, dx = e^{x} \sin x + C \] 3. **Evaluate the Integral with Limits**: We need to evaluate: \[ \left[ e^{x} \sin x \right]_{0}^{\frac{\pi}{2}} \] This means we will substitute the upper limit and lower limit into the expression. 4. **Substituting the Upper Limit**: First, substitute \( x = \frac{\pi}{2} \): \[ e^{\frac{\pi}{2}} \sin\left(\frac{\pi}{2}\right) = e^{\frac{\pi}{2}} \cdot 1 = e^{\frac{\pi}{2}} \] 5. **Substituting the Lower Limit**: Next, substitute \( x = 0 \): \[ e^{0} \sin(0) = 1 \cdot 0 = 0 \] 6. **Final Calculation**: Now, subtract the lower limit from the upper limit: \[ e^{\frac{\pi}{2}} - 0 = e^{\frac{\pi}{2}} \] Thus, the value of the integral \( \int_{0}^{\frac{\pi}{2}} e^{x} (\sin x + \cos x) \, dx \) is: \[ \boxed{e^{\frac{\pi}{2}}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi) e^(x) sin 2 x dx=

int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2)(a sin x + b cos x)/(sin x + cos x) dx=

int_(0)^(pi//2) e^(x) cos x" " dx=

int_(0)^((pi)/(2))(x)/(sin x+cos x)dx

int_(0)^(pi//2)(e^(sin x)- e^(cos x)))dx=

Evaluate :int_(0)^((pi)/(2))(sin x+cos x)dx