`sin 2x`

Text Solution

Verified by Experts

`int sin 2x dx= -(1)/(2) cos 2x +c`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.2|39 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.3|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7s|20 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|[1+sin ^2 x, cos ^2 x , 4 sin 2 x],[ sin ^2 x ,1+cos ^2 x , 4 sin 2 x],[ sin ^2 x , cos ^2 x , 1+4 sin 2 x]| , the maximum value of f(x) is

I= int ( sin 2 x)/( 1+ sin^(2) x) dx .

Knowledge Check

  • lim_(x rarr 0) ((2+x) sin (2+x) - 2 sin2)/(x) is equal to

    A
    sin 2
    B
    cos 2
    C
    1
    D
    1 cos 2 + sin 2
  • Similar Questions

    Explore conceptually related problems

    intx sqrt([(2 sin(x^2 -1)-sin 2(x^2 - 1))/(2 sin(x^2 - 1) + sin 2(x^2 -1 ))]) dx

    " if "A=[[cos^(2)x,sin^(2)x],[-sin^(2)x,-cos^(2)x]]" and "B=[[sin^(2)x,cos^(2)x],[-cos^(2)x,-sin^(2)x]]" then find "A+B"

    If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is

    " If determinant "|[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]|" is expanded as a function of "sin^(2)x" ,then the absolute value of constant term in expansion of function "

    If determinant |[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]| is expanded as a function of sin^(2)x ,then the absolute value of constant term in expansion of function is

    If /_\ = |[5+sin^(2)x,cos^(2)x,4sin2x],[sin^(2)x,5+cos^(2)x,4sin2x],[sin^(2)x,cos^(2)x,5+4sin2x]| =

    35 .Value of sin^(2)x+sin^(2)(x+pi/3)+sin^(2)(x-pi/3) is equal to