Home
Class 12
MATHS
int (sec^(2) x)/(" cosec "^(2)x) dx...

`int (sec^(2) x)/(" cosec "^(2)x) dx`

Text Solution

AI Generated Solution

To solve the integral \(\int \frac{\sec^2 x}{\csc^2 x} \, dx\), we can follow these steps: ### Step 1: Rewrite the integral We know that: \[ \sec^2 x = \frac{1}{\cos^2 x} \quad \text{and} \quad \csc^2 x = \frac{1}{\sin^2 x} \] Thus, we can rewrite the integral as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.2|39 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.3|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7s|20 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Integrate : int ( sec^2x dx )/ ( cosec^2x )

int x sec^2x dx

Knowledge Check

  • int (sec^(8)x)/("cosec"x)dx=

    A
    `(sec^(8)x)/(8) +c`
    B
    `(sec^(7)x)/(7)+c`
    C
    `(sec^(6)x)/(6)+c`
    D
    `(sec^(9)x)/(9)+c`
  • int(sec^(8)x)/("cosec x")dx=

    A
    `(sec^(8)x)/(8)+c`
    B
    `(sec^(7)x)/(7)+c`
    C
    `(sec^(6)x)/(6)+c`
    D
    `(sec^(9)x)/(9)+c`
  • The integral int sec^(2//3) "x cosec"^(4//3)"x dx" is equal to (here C is a constant of integration)

    A
    `3tan^(-1//3)x+C`
    B
    `-3tan^(-1//3)x+C`
    C
    `-3cot^(-1//3)x+C`
    D
    `-(3)/(4)tan^(-4//3)x+C`
  • Similar Questions

    Explore conceptually related problems

    int"cosec"^(2)(2x+5)dx

    int e^(x). "(cot x- cosec"^(2)" x) dx "

    int(sec^(2)x)/(tan x)dx

    int sec^(2//3) x cosec^(4//3) x dx is equal to

    int ("cosec"^(2)x)/((1-cot^(2)x))dx=?