Home
Class 12
MATHS
int (2-3 sin x)/(cos^(2) x) dx...

`int (2-3 sin x)/(cos^(2) x) dx`

Text Solution

AI Generated Solution

To solve the integral \( \int \frac{2 - 3 \sin x}{\cos^2 x} \, dx \), we can break it down into simpler parts. Here’s a step-by-step solution: ### Step 1: Rewrite the Integral We can separate the integral into two parts: \[ \int \frac{2 - 3 \sin x}{\cos^2 x} \, dx = \int \frac{2}{\cos^2 x} \, dx - \int \frac{3 \sin x}{\cos^2 x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.2|39 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.3|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7s|20 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Find the integral ,int(2-3sin x)/(cos^(2)x)dx

int(sin x)/(cos^(2)x)dx

int(sin x)/(cos^(2)x)dx

int( sin2 x)/(3+cos^(2)x)dx

int(2-3 cos x)/(sin^(2) x)dx

int (e ^ (sin x)) / (cos ^ (2) x) (x cos ^ (3) x-sin x) dx

int(sin^3 2x)/(cos^5 2x)dx=

int(2+3cos x)/(sin^(2)x)dx=

int(cos x)/(sin^(2)x)dx

int(cos x)/(sin^(2)x)dx