Home
Class 12
MATHS
(x)/((x-1)^(2)(x+2))...

`(x)/((x-1)^(2)(x+2))`

Text Solution

AI Generated Solution

To solve the integral \(\int \frac{x}{(x-1)^2 (x+2)} \, dx\), we will use the method of partial fractions. Here’s a step-by-step solution: ### Step 1: Set up the partial fraction decomposition We want to express \(\frac{x}{(x-1)^2 (x+2)}\) as a sum of simpler fractions. We assume: \[ \frac{x}{(x-1)^2 (x+2)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+2} \] where \(A\), \(B\), and \(C\) are constants to be determined. ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.6|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.7|11 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.4|25 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

(x^(2)+x+1)/((x+1)^(2)(x+2))

Integrate the functions (x^(2)+x+1)/((x+1)^(2)(x+2))

int(x^(2)+x-1)/((x+1)^(2)(x+2))dx

Evaluate: int(x^(2)+x+1)/((x+1)^(2)(x+2))dx

int((x-1)/((x+1)^(2)(x-2))dx

Resolve (3x-2)/((x-1)^(2)(x+1)(x+2)) into partial fractions.

I= int(3x-2)/((x-1)^(2)(x+1)(x+2))dx

int(3x-2)/((x-1)^(2)(x+1)(x+2))dx

find the value of x for which f(x) = ((2x-1)(x-1)^(2)(x-2)^(2))/((x-4)^(2))ge 0.

Find the values of x for which f(x)=((2x-1)(x-1)^(2)(x-2)^(3))/((x-4)^(4))>0