Home
Class 12
MATHS
(1)/(x^(4)-1)...

`(1)/(x^(4)-1)`

Text Solution

Verified by Experts

`int(1)/(x^(4)-1)dx`
`=int(1)/((x^(2)-1)(x^(2)+1))dx`
`=(1)/(2) int(2)/((x^(2)-1)(x^(2)+1))dx`
`=(1)/(2) int((x^(2)+1)-(x^(2)-1))/((x^(2)-1)(x^(2)+1))dx`
`=(1)/(2) int(1)/(x^(2)-1) dx -(1)/(2) int(1)/(x^(2)+1)dx`
`=(1)/(2) .(1)/(2) log |(x-1)/(x+1)|-(1)/(2) tan^(-1) x+c`
` =(1)/(4) log|(x-1)/(x+1)|-(1)/(2) tan^(-1) x+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.6|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.7|11 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.4|25 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(sqrt(x^(2)+1)-(x^(2)+1)^((1)/(3)))/((x^(4)+1)^((1)/(4))-(x^(4)-1)^((1)/(5))) is equal to

The domain of definition of f(x)=log_(2)( -log_(1//2) (1+(1)/(x^(1//4)))-1) is :

lim_(x rarr0)((1+x)^((1)/(4))-(1-x)^((1)/(5)))/(x)

if y=log((1+x)/(1-x))^((1)/(4))-(1)/(2)tan^(-1)x, th e n (dy)/(dx)

Solve for x in (4x-1)/(4x+1)+(4x+1)/(4x-1)=(10)/(3)

Simplify :((-7)/(18)x(15)/(-7))-(1x(1)/(4))+((1)/(2)x(1)/(4))

int(1)/((x+1)[(x+1)^(4)+1])dx=(1)/(4)*log f(x)+c then the value of f(x) at x=1 is