Home
Class 12
MATHS
int((x^2+1)(x^2+2))/((x^2+3)(x^2+4))dx...

`int((x^2+1)(x^2+2))/((x^2+3)(x^2+4))dx`

Text Solution

Verified by Experts

Hence the degree of numerator and denominator both are 4. So, we put `x^(2)`=t and divide.
`((x^(2)-1)(x^(2)-2))/((x^(2)+3)(x^(2)+4))=((t+1)(t+2))/((t+3)(t+4))`
` =(t^(2)+3t+2)/(t^(2)+7t+12)=1-(4t+10)/(t^(2)+7t+12).`
`" Now " int((x^(2)+1)(x^(2)+2))/((x^(2)+3)(x^(2)+4))dx`
`= int1dx -int((4t+10))/(t^(2)+7t+12)dx`
` = int 1dx-int (4t+10)/((t+3)(t+4))dx......(1)`
`" Let " (4t+10)/((t+4)(t+3)) =(A)/((t+4)) +(B)/((t+3))`
` rArr (4t+10)/((t+3)(t+4))=(A(t+3)+B(t+4))/((t+4)(t+3))`
`rArr 4t+10 =A(t+3) +B(t+4)`
t=-3 then -12 +10 =0 + A(-1) +0 `rArr` b=-2
t=-4 then - 16+10=A(-1) +0 `rArr ` A=6
`:. (4t+10)/((t+4)(t+3)) =(6)/(t+4)-(2)/(t+3)`
Put these values in equation (1).
`int ((x^(2)+1)(x^(2)+2))/((x^(2)+3)(x^(2)+4)) dx`
` = int 1dx - int ((6)/(t+4)-(2)/(t+3))dx`
` = int 1dx - int [(6)/(x^(2)+4)-(2)/((x^(2)+3))]dx`
`" (put t= "x^(2))`
`rArr int((x^(2)+1)(x^(2)+2))/((x^(2)+3)(x^(2)+4))dx`
`=int 1dx - int[(6)/(x^(2)-2^(2))-(2)/(x^(2)+(sqrt(3))^(2))]dx`
` =x-6 ((1)/(2)tan^(-1). (x)/(2)) +2 ((1)/(sqrt(3))tan^(-1) .(x)/(sqrt(3)))+c`
` =x-3 tan^(-1) .(x)/(2) +(2)/(sqrt(3)) tan^(-1) .(x)/(sqrt(3))+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.6|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.7|11 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.4|25 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int((x^(2)+1)(x^(2)+4))/((x^(2)+3)(x^(2)-5))dx

int(x^(2))/((x^(2)+1)(x^(2)+4))dx

int((x-1)^(2))/(x^(4)-2x^(3)+x^(2))dx

f(x)=int(e^(x^(2))(4x^(2)-1))/(x^((3)/(2)))dx

int(x^(2))/((x^(2)+1)(x^(2)+3))dx

int(3)/((x^2+1)(x^2+4))dx=

int(2x^(2)(1+2x^(2)))/((1+x^(2)+x^(4))^(2))dx is equal to

"int(x^(3)+2x^(2)-4)/(x^(2))dx

int(x^2+x+3)/((x-2)(x+1))dx

int(x^(2))/((1+x^(3))(2+x^(3)))dx