Home
Class 12
MATHS
int(0)^(pi/2) cos 2x dx...

`int_(0)^(pi/2) cos 2x dx`

Text Solution

Verified by Experts

`int_(0)^(pi//2) cos 2x dx=[(sin 2x)/(2)]_(0)^(pi//2)`
`=(1)/(2)[sin 2x]_(0)^(pi//2)`
`=(1)/(2) [(sin 2xx .(pi)/(2))-sin(0)] =(1)/(2) (0-0)=0`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.10|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.11|21 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.8|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

(i) int_0^(pi/2) sin^2 x dx (ii) int_0^(pi//2) cos^2 x dx

int _(0)^(pi//2)cos^(2)x dx is equal to

int_0^(pi//2) x^2 cos 2x dx

If I_(1)=int_(0)^(pi//2)"x.sin x dx" and I_(2)=int_(0)^(pi//2)"x.cos x dx" , then

int_(0)^( pi)|cos x|dx=2

Evaluate the following integral: int_0^(pi//2)x^2cos2x\ dx