Home
Class 12
MATHS
int(pi/6)^(pi/4) " cosec "x dx...

`int_(pi/6)^(pi/4) " cosec "x dx`

Text Solution

Verified by Experts

`I= int_(pi//6)^(pi//4) " cosec "x dx`
`=[log |"cosec"x-cot x|]_(pi//6)^(pi//4)`
`=log |"cosec ".(pi)/(4)-cot .(pi)/(6)|`
`=log |sqrt(2)-1|-log |2-sqrt(3)|`
`=log |(sqrt(2)-1)/(2-sqrt(3))|`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.10|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.11|21 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.8|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(pi//6)^(pi//4)cosec 2x dx=

int_(pi//6)^(pi//2) (" cosec x cot x")/(1+" cosec "^(2) x)dx

int_(pi//6)^(pi//2) ("cosec "x cot x)/(1+ "cosec"^(2)x)

int_(pi//6)^(pi//2) cos x dx

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

The value of int _(pi//4) ^(pi//3) cosec x d (sin x ) for 0 lt x lt pi //2 is

int_(-pi//4)^(pi//4)cosec^(2)xdx

int_(pi//6)^(pi//3)cos^(2)x dx=

int _(pi//4)^(pi//2) "cosec"^(2)dx is equal to