Home
Class 12
MATHS
int2^8|x-5|dx...

`int_2^8|x-5|dx`

Text Solution

Verified by Experts

`" Let "I= int_(2)^(8) |x-5|dx`
`rArr I=int_(2)^(5){-(x-5)}dx +int_(5)^(8)(x-5)dx`
`=int_(2)^(5)(5-x)dx+int_(5)^(8)(x-5)dx`
`=[5x-(x^(2))/(2)]_(2)^(5)+[(x^(2))/(2)-5x]_(5)^(8)`
`=(25-(25)/(2))-(10-(4)/(2))`
`+((64)/(2)-40)-((25)/(2)-25)`
`=(25)/(2)-8-+(25)/(2)=25-16=9`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: int_0^8 |x-5|dx

int_(2)^(8)|x-5|dx

Evaluate int_(2)^(8)|x-5|dx .

By using the properties of definite integrals, evaluate the integrals int_(2)^(8)|x-5|dx and int_(-5)^(5)|x+2|dx

int_(2)^(8) |x-5| dx=?

What is int_(2)^(8) |x-5|dx equal to ?

int_(0)^(8)|x-5|dx=17