Home
Class 12
MATHS
Evaluate : int0^(pi/4)log(1+tanx)dxdot...

Evaluate : `int_0^(pi/4)log(1+tanx)dxdot`

Text Solution

Verified by Experts

`"Let "I= int_(0)^(pi//4) log (1+tan x)dx " " ...(1)`
`=int_(0)^(pi//4) log{1+tan ((pi)/(4) -x)}dx`
`=int_(0)^(pi//4) log{1+(tan.(pi)/(4)-tanx)/(1+tan.(pi)/(4)tanx)}dx`
`=int_(0)^(pi//4)log{1+(1-tanx)/(1+tanx)}dx`
`=int_(0)^(pi//4)log((2)/(1+tanx))dx`
`=int_(0)^(pi//4) log 2. dx-int_(0)^(pi//4)log (1+tanx)dx`
`rArr I=log 2[x]_(0)^(pi//4) -I`
`rArr 2I=(pi)/(2) log 2rArr I=(pi)/(8) log 2`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi//2)log(tanx)dx

Evaluate :int_(0)^((pi)/(4))log(1+tan x)dx

Evaluate int_(0)^((pi)/(4))log(1+tan x)dx

Evaluate: int_0^(pi//4)"log"(1+"t a n x")dx

Evaluate int_(0)^(pi//4)In(1+tanx)dx

int_(0)^(pi//4) log (1+tan x) dx =?

Evaluate int_0^(pi/4) secx tanx dx