Home
Class 12
MATHS
int(0)^(2) xsqrt(2-x)dx...

`int_(0)^(2) xsqrt(2-x)dx`

Text Solution

AI Generated Solution

To solve the integral \( I = \int_{0}^{2} x \sqrt{2 - x} \, dx \), we can utilize a property of definite integrals. This property states that if we have an integral from \( 0 \) to \( a \) of a function \( f(x) \), we can express it in another form by substituting \( a - x \) into the function. ### Step-by-Step Solution 1. **Set up the integral:** \[ I = \int_{0}^{2} x \sqrt{2 - x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^1 (xsqrt(1-x))dx

The value of int_(0)^(3) xsqrt(1+x)dx , is

int_(1)^(4)xsqrt(x)dx=?

int_0^2 xsqrt(x+2)dx

Evaluate the following : int_(0)^(1)x.sqrt((1-x^(2))/(1+x^(2)))dx

int_(0)^(2)(x^(2)+x)dx

Prove that : int_(0)^(2a) f(x)dx=int_(0)^(a) f(x)dx+int_(0)^(a) f(x)dx+int_(0)^(a) f(2a-x)dx

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

int_(0)^(2)x^(2)[x]dx

int_(1)^(2)dx/(xsqrt(x^2-1))