Home
Class 12
MATHS
int(0)^( pi)(x)/(1+sin x)dx...

`int_(0)^( pi)(x)/(1+sin x)dx`

Text Solution

Verified by Experts

`"Let I"= int_(0)^(pi) (x)/(1+sinx)dx`
`rArr " "I=int_(0)^(pi) (pi-x)/(1+sin (pi-x))dx`
`=int_(0)^(pi)(pi-x)/(1+sin x)dx`
Adding equations (1) and (2)
`2I =int_(0)^(pi)(x+pi-x)/(1+sin x)dx`
`=piint_(0)^(pi)(1)/(1+sinx).(1-sin x)/(1-sin x)dx`
`=piint_(0)^(pi)(1-sinx)/(1-sin^(2)x)dx`
`=pi int_(0)^(pi)(1-sinx)/(cos^(2)x)dx`
`=pi int_(0)^(pi)(sec^(2)x-secx tan x) dx`
`=pi [tan x-sec x]_(0)^(pi)`
`=pi [(tan pi-sec pi)-(tan 0-sec 0)]`
` =pi (1+1) =2pi`
`rArr " "I=pi`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate :int_(0)^( pi)(1)/(1+sin x)dx

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then k=

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then the value of k is

int_(0)^(pi) dx/(1-sin x)=

int_(0)^( pi)(x)/(1+sin^(2)x)dx

int_(0)^( pi)(x)/(1+sin^(2)x)dx

int_(0)^(pi)(1)/(1+sin x)dx is equal to

int_(0)^( pi)(x)/(1+sin^(2)x)*dx

int_(0)^( pi)(x)/(1+sin^(2)x)*dx

int_(0)^( pi)(x)/((1+sin^(2)x))dx