Home
Class 12
MATHS
int0^pilog(1+cosx)dx ....

`int_0^pilog(1+cosx)dx` .

Text Solution

Verified by Experts

`"Let I "= int_(0)^(pi//2) log (1+cos x) dx " "......(1)`
`rArr I =int_(0)^(pi) log{1+cos (pi-x) }dx`
`[ :' int_(0)^(a) f(x) dx= int_(0)^(a) f(a-x) dx]`
`=int_(0)^(pi)log (1-cos x)dx`
`=int_(0)^(pi) log {2sin^(2)((x)/(2))}dx`
` =int_(0)^(pi) {log 2+2 log (sin .(x)/(2))}dx`
`=int_(0)^(pi) log 2 dx+ 2 int_(0)^(pi) log (sin .(x)/(2)) dx`
`"Put " .(x)/(2) =t " in second integral "`
`rArr " "dx=2dt`
`" and " x=0 rArr t=0`
`" and " x=pi rArr t=(pi)/(2)`
`:. I =log 2[x]_(0)^(pi) +2int_(0)^(pi//2) log (sin t) 2dt`
`=log 2(pi-0)+ 4((-pi)/(2)log 2)`
`[ :' int_(0)^(pi//2) log sin x dx =-(pi)/(2)log 2]`
`=-pi log 2`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_0^pilog(1-cos x)dx

Evaluate: int_0^pi log(1+cosx)dx

int_(0)^(pi)log(1+cosx)dx=-pi(log2)

Evaluate: int_0^pi1/(1+e^(cosx))dx

If l_(1)=int_(0)^(npi)f(|cosx|)dx and l_(2)=int_(0)^(5pi)f(|cosx|)dx , then

8) int_0^(2pi)cosx dx

Evaluate the following integrals: int_0^picosx|cosx|dx

int_(0)^(pi)|cosx|dx=?

Find the value of int_0^(2pi) |cosx|dx

Evaluate int_0^(pi/2)sinx.log cosx dx