Home
Class 12
MATHS
int(0)^(a) |x-1|dx...

`int_(0)^(a) |x-1|dx`

Text Solution

Verified by Experts

`" Let I "= int_(0)^(4) |x-1|dx`
`:. I= int_(0)^(1) |x-1|dx+int _(1)^(4) |x-1|dx`
`=int_(0)^(1) (1-x)dx+ int_(1)^(4) (x-1) dx`
`=[x-(x^(2))/(2)]_(0)^(1) +[(x^(2))/(2)-x]_(1)^(4)`
`=(1-(1)/(2))-0+((4^(2))/(2)-x)-((1)/(2)-1)`
`=(1)/(2)+4+(1)/(2)=5`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

The valueof integral int_(0)^(4) |x -1|dx is

18.int_(0)^(4)|x-1|dx

(8.int_(0)^(4)|x-1|dx

Evaluate int_(0)^(4)|x-1|dx

int_(0)^(4)(|x-1|)dx

int_(0)^(1)|3x-1|dx=

By using the properties of definite integrals, evaluate the integrals int_(0)^(4)|x-1|dx

Evaluate the following integral: int_(0)^(1)|2x-1|dx

The value of int_(0)^(4)|x-1|dx is