Home
Class 12
MATHS
int(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx...

`int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx`

Text Solution

AI Generated Solution

To solve the integral \[ I = \int_{0}^{1} \frac{1}{\sqrt{1+x} - \sqrt{x}} \, dx, \] we will rationalize the denominator. ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.11|21 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(1)(1)/(sqrt(x+1)-sqrt(x))dx=(a(sqrt(2)))/(3) , then a =

If int_(0)^(b)(1)/(sqrt(1+x)-sqrt(x))dx=(2)/(3)(2sqrt(2)) , then b =

int_(0)^(1)(dx)/(sqrt(x+1)-sqrt(x))1dx

int_(0)^(1) (dx)/(sqrt(1+x)sqrt(x))=

int((1)/(sqrt(x))-sqrt(x))dx

int_(0)^(1)(dx)/(3sqrt(x))

int_(0)^(2)(1)/(sqrt(x))dx

If int_(0)^(1)(1)/(sqrt(3+x)+sqrt(1+x))dx=a+b sqrt(2)+c sqrt(3) ,where a,b,c are rational numbers, then 2a+3b-4c , is equal to:

int_(4)^(9)(1)/(sqrt(x)(1+sqrt(x))dx)

int(1/sqrt(x)-sqrt(x))dx