Home
Class 12
MATHS
int(1)^(3) (dx)/(x^(2)(x+1))=(2)/(3)+log...

`int_(1)^(3) (dx)/(x^(2)(x+1))=(2)/(3)+log .(2)/(3)`

Text Solution

Verified by Experts

`int_(1)^(3) (1)/(x^(2)(x+1))dx=(2)/(3)+log .(2)/(3)`
`" Let " (1)/(x^(2)(x+1))=(A)/(x)+(B)/(x^(2))+(C )/(x+1)" "(1)`
`rArr 1=A x(x+1) +B(x+1) +Cx^(2)" "......(2)`
x =0 then 1=0 +B+0`rArr` B
x=-1 then 1=0 +0+C `rArr` C=
Equating coefficients of `x^(2)`
`0=A+C rArr A=-C =-1`
`:. int_(1)^(3)(1)/(x^(2)(x+1))dx`
`=int_(1)^(3) (-(1)/(x)+(1)/(x^(2))+(1)/(x+1))dx`
`=[-log|x|-(1)/(x)+log|x+1|]_(1)^(3)`
`=[log|(x+1)/(x)|-(1)/(x)]_(1)^(3)`
`=(log |(4)/(3)|-(1)/(3))-(log|(2)/(1)|-(1)/(1))`
`=(log .(4)/(3) -log 2)+(1-(1)/(3))`
=log ((4)/(2)xx(1)/(2))+(2)/(3)=log.(2)/(3)+(2)/(3)`
Hence proved.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.11|21 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(1)^(3)(dx)/(x^(2)(x+1))=(2)/(3)+(log2)/(3)

int_(1)^(3)(dx)/(x^(2)(x+1))=(2)/(3)+(log2)/(3)

int_(1)^(3)(log x)/(x)dx

int_(1)^(3)(log x)^2/(x)dx

int_(1)^(2) (dx)/(x(1+log x)^(2))

int_(1)^(3)(x-1)(x-2)(x-3)dx=

int_(1)^(2)(log x)/(x)dx=

int_(1)^(3)(log x)/((x+1)^(2))dx

int_(1)^(3)(log x)/((x+1)^(2))dx

int_(1//e)^(e) (dx)/(x(log x)^(1//3))