Home
Class 12
MATHS
int(0)^(1) x e^(x) dx=1...

`int_(0)^(1) x e^(x) dx=1`

Text Solution

Verified by Experts

`int_(0)^(1) xe^(x) dx=[x int e^(x) dx-int 1.e^(x) dx]_(0)^(1)`
`=[xe^(x) -e^(x)]_(0)^(1)=[e^(x)(x-1)]_(0)^(1)`
`=e(1-1)-e^(0)(0-1)=0+1=1`
Hence proved.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.11|21 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x^2e^(2x)dx

int_(-1)^(1)|x|e^(x)dx

int_(-1)^(1)e^(x)dx

The value of int_(0)^(1) "max" (e^(x) , e^(1-x) ) dx equals

show that (a) int_(0) ^(2pi) sin ^(3) x dx = 0 , (b) int_(-1)^(1) e^(-x^(2)) dx = 2 int_(0)^(1) e^(-x^(2)) dx

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , hten

What is the value of int_(0)^(1)(x-1)e^(-x) dx ?

int _(0) ^(1) e ^(2x ) dx = ................