Home
Class 12
MATHS
int- 1^1x^(17)cos^4x dx=0...

`int_- 1^1x^(17)cos^4x dx=0`

Text Solution

Verified by Experts

`" Let " f(x) =x^(17) cos^(14) x`
`rArr" " f(-x) =(-x)^(17) cos^(4) (-x)`
`=-(x)^(17)cos^(4)x=-f(x)`
Therfore f(x) is an odd function .
we know that if f(x) is an odd function then
`int_(-a)^(a) f(x) dx=0`
`:. int_(-1)^(1) x^(17) cos^(4) x dx=0`
Hence proved
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.11|21 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)x^(17)cos^(4)xdx=0

Prove that int_(-1)^(1)x^(17)cos^(4)xdx=0

int_(-1)^(1)x^(17)cos^(4) x dx is equal to

(i) int_-8^8 (sin^93 x+x^295) dx (ii) int_-1^1 sin^5x cos^4x dx (iii) int_(-pi//4)^(pi//4) x^3 sin^4 x dx (iv) int_-1^1 x^17 cos^4 x dx

int_(0)^(1)cos^(-1)x dx=

int_(-1)^1 sin^5 x cos^4 x dx is :

int 1/(sin^2x cos^4x)dx

int_(-1)^(1)(sin x)^(5)(cos x)^(4)dx=

int(1)/(1-cos^(4)x)dx