Home
Class 12
MATHS
int(0)^(pi/4) sin^(3) x dx=(2)/(3)...

`int_(0)^(pi/4) sin^(3) x dx=(2)/(3)`

Text Solution

AI Generated Solution

To solve the integral \( \int_{0}^{\frac{\pi}{4}} \sin^3 x \, dx \) and show that it equals \( \frac{2}{3} \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( \sin^3 x \) in a more manageable form: \[ \sin^3 x = \sin^2 x \cdot \sin x = (1 - \cos^2 x) \sin x \] Thus, we can express the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.11|21 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)sin^(3)x dx=

int_(0)^( pi)sin^(3)x*dx=(4)/(3)

int_(0)^( pi/4)sin2x sin3xdx

int_0^(pi//2) sin^3 x dx

int_(0)^(pi) sin 3x dx

Evaluate the following : int_(0)^(pi)x sin^(3)x dx

int_(0)^( pi/4)sin2x*sin3xdx

int_(0)^( pi/4)sin|x|dx

The value of int_(0)^(pi) x sin^(3) x dx is

Prove that : int_(0)^(pi//2) (sin^(3)x)/(sin^(3) x+ cos^(3)x)dx =(pi)/(4)