Home
Class 12
MATHS
int0^(pi/4)2tan^3xdx=1-log2...

`int_0^(pi/4)2tan^3xdx=1-log2`

Text Solution

Verified by Experts

`"Let i "= int_(0)^(pi//4) 2 tan^(3) x dx`
` =2 int_(0)^(pi//4) tan^(2) x. tan x dx`
` =2int_(0)^(pi//4) (sec^(2) x-1 )tan x dx`
` =2[int_(0)^(pi//4) sec^(2) x tan x dx -int_(0)^(pi//4) tan x dx]`
`=2int_(0)^(pi//4) (tanx )sec^(2) x dx -2[-log |cos x|]_(0)^(pi//4)`
` =2[(tan^(2))/(2)]_(0)^(pi//4) +2 [log |cos.(pi)/(4)|-log |cos 0|] =tan^(2) ((pi)/(4))-0+2 [log ((1)/(sqrt(2))) -log 1]`
`=1+2log 2^(-1//2) -0`
`=1 -2xx (1)/(2) log 2=1-log 2`
hence proved
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.11|21 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/4) tan^3xdx

int_0^(pi/4) 2 tan^3 x dx=1-log 2

int_0^(pi//4) 2 tan^3 x dx=1-log 2

int_(0)^(pi//4)2tan^(3)xdx

Prove that int_(0)^((pi)/(4))2tan^(3)xdx=1-log2

int_(0)^((pi)/(4))2tan^(3)xdx=1-log2

int_(0)^( pi/3)tan xdx

int_0^(pi/2)sin^2xdx =

int_(0)^( pi) tan xdx

int_0^(pi/4) sec^4xdx