Home
Class 12
MATHS
int(0)^(1) sin^(-1) x dx =(pi)/(2) -1...

`int_(0)^(1) sin^(-1) x dx =(pi)/(2) -1`

Text Solution

AI Generated Solution

To solve the integral \( \int_{0}^{1} \sin^{-1} x \, dx \) and show that it equals \( \frac{\pi}{2} - 1 \), we will use a substitution and integration by parts. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = \sin \theta \). Then, \( dx = \cos \theta \, d\theta \). - When \( x = 0 \), \( \theta = 0 \). - When \( x = 1 \), \( \theta = \frac{\pi}{2} \). ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.11|21 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)((sin^(-1)x)/(x))dx=(pi)/(2)(log2)

int_0^1 sin^-1x dx=pi/2-1

int_(0)^(pi/2) sin^(-1)(sin x)dx

show that (a) int_(0) ^(2pi) sin ^(3) x dx = 0 , (b) int_(-1)^(1) e^(-x^(2)) dx = 2 int_(0)^(1) e^(-x^(2)) dx

int_(0)^(1)log sin((pi)/(2)x)dx equals

(i) Show that int_(0)^(pi)xf(sinx)dx =(pi)/(2)int_(0)^(pi)f (sin x)dx. (ii) Find the value of int_(-1)^(3//2)|x sin pix|dx .

int_(0)^(pi) dx/(1-sin x)=

int_(0)^(pi)(x sin x)/(1-sin x)dx=

Evaluate int_(0)^(1)log(sin((pi x)/(2)))dx

int_(-1)^(1)((sin^(-1)x)^(2)dx)/(1+pi^(sin x))is