Home
Class 12
MATHS
int(dx)/(e^x+e^(-x))is equal to...

`int(dx)/(e^x+e^(-x))`is equal to

A

`tan^(-1) (e^(x)) +C`

B

`log(e^(x)-e^(-x))+C`

C

`log (e^(x)+e^(-x))+C`

D

`tan^(-1) (e^(2x)) +C`

Text Solution

Verified by Experts

The correct Answer is:
A

`I= int(1)/(e^(x)+e^(-x))dx= int(1)/(e^(x)+(1)/(e^(x)))dx`
`=(e^(x))/((e^(x))^(2)+1)dx" " underset(rArr e^(x) dx=dt)(" Let " e^(x)=t)`
`:. I= int(1dt)/(t^(2)+1)=tan^(-1) (t)+C =tan^(-1)e^(x)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.11|21 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(e^(x)+e^(-x)) equals

int(dx)/(1+e^(-x)) is equal to

int(dx)/(e^(x)+e^(-x)+2) is equal to

int(1+x)/(x+e^(-x))dx is equal to

int(dx)/(e^(x)+e^(2x))

l=int(dx)/(1+e^(x)) is equal to

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

(2) int(1)/(e^(x)+e^(-x))dx is equal to

int e^(x)dx is equal to