Home
Class 12
MATHS
If | inta ^b f(x) dx| = inta ^b |f(x)| d...

If `| int_a ^b f(x) dx| = int_a ^b |f(x)| dx, a lt b`, then `f(x) = 0` has

Text Solution

Verified by Experts

`" Let " I= int_(1)^(b) x f(x) dx" "...(1)`
`rArr I= int_(a)^(b) (a+b-x)f(a+b-x)dx`
`=int_(a)^(b) (a+b-x)f(x) dx" "....(2)`
`[ :' f(a+b-x)=f(x)" given "]`
Adding equations (1) and (2)
`rArr 2I = int_(a)^(b) (a+b) f(x) dx`
` I=(a+b)/(2)int_(a)^(b) f(x) dx`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Exercise 7.11|21 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

If |int_(a)^(b)f(x)dx|=int_(a)^(b)|f(x)|dx,a

int _(a) ^(b) f (x) dx = int _(a) ^(b) f (a + b - x) dx

int_(a + c)^(b+c) f(x)dx=

int_a^b[d/dx(f(x))]dx

Prove that int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx

If f(a+b-x)=f(x) , then int_(a)^(b)x f(x)dx=

Prove that : int_(-a)^(a)f(x)dx =2 int_(a)^(0) f(x)dx, if f(x) is even funtion =0 , if f(x) is off fuction.