Home
Class 11
MATHS
अगर cos^2 A-sin^2A= tan^2 B, तो सिद्ध की...

अगर `cos^2 A-sin^2A= tan^2 B`, तो सिद्ध कीजिय की `2cos^2B-1=cos^2B - sin^2 B=tan^2 A`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(2)A-sin^(2)A=tan^(2)B, prove that 2cos^(2)B-1=cos^(2)B-sin^(2)B=tan^(2)A

If cos^2 A - sin^2 A = tan^2 B then prove that 2 cos^2 B -1 = tan^2 A

If cos^2 A - sin^2 A = tan^2 B then prove that 2 cos^2 B -1 = tan^2 A

(cos2B-cos2A)/(sin2B+sin2A)=tan(AB)

If cos^(2)A-sin^(2)A=tan^(2)B then prove that 2cos^(2)B-1=tan^(2)A

(cos 2B - cos 2 A)/( sin 2 A + sin 2 B) = tan (A -B).

Prove that sin^2 A cos^2 B+cos^2 A sin^2 B+cos^2 A cos^2 B+sin^2 A sin^2 B=1

2cos^(2)B-1=tan^(2)A, then cos A cos B=

Prove the following identity : sin^2 A cos^2 B + cos^2 A sin^2 B + cos^2 A cos^2 B+ sin^2 A sin^2 B = 1 .

If tan^(2) A= 2 tan ^(2) B+1, "then " cos 2A + sin^(2)B =