Home
Class 10
MATHS
" If "x=r sin A cos C;y=r sin A sin C" a...

" If "x=r sin A cos C;y=r sin A sin C" and "z=r cos A," prove that "r^(2)=x^(2)+y^(2)+z^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=r sin A cos C,quad y=r sin A sin C and z=r cos A, prove that r^(2)=x^(2)+y^(2)+z^(2)

If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x^(2) + y^(2) + z^(2) = r^(2)

If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x^(2) + y^(2) + z^(2) = r^(2)

If x = r cos theta sin phi, y = r sin theta sin phi , and z= r cos phi , prove that x^(2)+y^(2) + z^(2)=r^(2) .

If x=r sin alpha cos beta, y= r sin alpha sin beta and z= r cos alpha , prove that x^(2)+y^(2) + z^(2) = r^(2).

If x=r sin theta cos phi, y= r sin theta sin phi, z=r cos theta , prove that x^2+y^2+z^2=r^2 .

If x=r sin theta cos varphi,y=r sin theta sin varphi and z=r cos theta, then x^(2)+y^(2)+z^(2)=r^(2)(b)x^(2)+y^(2)-z^(2)=r^(2)(c)x^(2)-y^(2)+z^(2)=r^(2)(d)z^(2)+y^(2)-x^(2)=r^(2)

If x=sin A cos B and y=sin A sin B and z=cos A then find x^(2)+y^(2)+z^(2)

If x=r sin theta cos phi,y=r sin theta sin phi and z=r cos theta,thenx^(2)+y^(2)+ is independent of theta,phi(b)r,theta(c)r,phi(d)r

If x=r cos theta cos phi , y=r cos theta sin phi and z=r sin theta , then x^(2)+y^(2)+z^(2)=