Home
Class 11
MATHS
y=x^(x^(x-1)-oo)...

y=x^(x^(x-1)-oo)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(x^(x...oo)) then prove that xdy/dx=(y^2)/(1-ylogx)

If y=x^(x^(x...oo)) then prove that xdy/dx=(y^2)/(1-ylogx)

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

If y = x^(x)^(x)^(x)^(oo) , then x(1-y log x) dy/dx =

If y=a^(x^(x^(2)*oo)), prove that (dy)/(dx)=(y^(2)log y)/(x(1-y log x*log y))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y=x^(x^(x^x...oo) , find (dy)/(dx)

If f:[1,oo) to [1,oo) is defined by f(x) = 2^(x(x-1)) then find f^(-1)(x) .