i^(9)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(9)(x_(i)-5)=9andsum_(i=1)^(9)(x_(i)-5)^(2)=45 , then the standard deviation of the 9 items x_(1),x_(2),......,x_(9) is

If sum_(i=1)^(9) (x_(i)-5)=9 " and" sum_(i=1)^(9) (x_(i)-5)^(2)=45 , then the standard deviation of the 9 items x_(1),x_(2),..,x_(9) is

If sum_(i=1)^(9)(x_(i)-5)=9 and sum_(i=1)^(9)(x_(i)-5)^(2)=45 then the standard deviation of the 9 items x_(1),x_(2),......,x_(9) is

If sum _(i=1) ^(9) (x _(i) - 5) = 9 and sum_(i =1) ^(9) (x _(i) - 5) ^(2) = 45, then the standard deviation of the 9 terms x _(1), x _(2),....,x _(9) is

If sum_(i=1)^(9) (x_(i)-5) " and" sum__(i=1)^(9) (x_(i)-5)^(2)=45 , then the standard deviation of the 9 items x_(1),x_(2),..,x_(9) is

Evaluate (i^(.81) + 1)/(i^(253))^(9)

[i^(17)+1/(i^(315))]^(9) is equal to

Evaluate (i^(.81) + 1)/(i^(253))^(9)

[i^(17)+1/(i^(315))]^(9) is equal to

STATEMENT-1: If sum_(i=1)^(9)(x_(i)-8)=9 and sum_(i=1)^(9)(x_(i)-8)^(2)=45 then s.D.~ of~ x_(1),x_(2),.....,x_(9), is 2. STATEMENT- 2: S.D.is independent of change of origin.